MongoDB $group 运算符

2024 年 9 月 6 日 | 阅读 4 分钟

$group 运算符在 MongoDB 中至关重要,因为它有助于执行各种数据转换。 $group 运算符按某些指定的表达式对相似数据进行分组,并为每个不同的分组对文档进行分组。

假设数据库中有 50 名学生,他们都喜欢板球。 如果我们想计算所有喜欢板球的学生,那么 $group 运算符是解决此类任务的绝佳方案。

语法

要点

  1. _id:此字段是分组所必需的。 如果您将 _id 字段的值指定为 null 或常量,则 $group 运算符会将所有输入文档的累积值作为一个整体进行计算。
  2. 字段:这是一个可选字段,使用 <accumulator> 运算符计算。

示例

在下面的示例中,我们将使用

{
        "_id" : A1,
        "item_name" : "Blue box",
        "price" : 10,
        "qty" : 15,
        "date_of_bill" : "13/04/2015"
}
{
        "_id" : A2,
        "item_name" : "Light Red box",
        "price" : 15,
        "qty" : 20,
        "date_of_bill" : "05/12/2014"
}
{
        "_id" : null,
        "item_name" : "Green box",
        "price" : 10,
        "qty" : 30,
        "date_of_bill" : "17/12/2014"
}
{
        "_id" : A3,
        "item_name" : "White box",
        "price" : 8,
        "qty" : 25,
        "date_of_bill" : "07/02/2014"
}
{
        "_id" : A4,
        "item_name" : "Blue box",
        "price" : 15,
        "qty" : 20,
        "date_of_bill" : "13/04/2015"
}
{
        "_id" : A5,
        "item_name" : "Red box",
        "price" : 12,
        "qty" : 10,
        "date_of_bill" : "05/12/2014"
}
{
        "_id" : A6,
        "item_name" : "Black box",
        "price" : 10,
        "qty" : 30,
        "date_of_bill" : "22/04/2020"
}
{
        "_id" : A7,
        "item_name" : "Red box",
        "price" : 8,
        "qty" : 15,
        "date_of_bill" : "05/12/2014"
}
{
        "_id" : A8,
        "item_name" : "Green box",
        "price" : 20,
        "qty" : 10,
        "date_of_bill" : "17/12/2014"
}
{
        "_id" : A9,
        "item_name" : "Green box",
        "price" : 10,
        "qty" : 30,
        "date_of_bill" : "17/12/2014"
}

示例 1:$group

在此示例中,我们将按账单日期分组并显示这些字段(总价、平均数量和计算同一日期的账单数量)。

输出

{ "_id" : "13/04/2015", "Total_price" : 875, "Average_qty" : 17.5, "count" : 2 }
{ "_id" : "05/12/2014", "Total_price" : 1575, "Average_qty" : 15, "count" : 3 }
{ "_id" : "17/12/2014", "Total_price" : 2800, "Average_qty" : 28.3333333, "count" : 3 }
{ "_id" : "07/02/2014", "Total_price" : 200, "Average_qty" : 25, "count" : 1 }
{ "_id" : "22/04/2020", "Total_price" : 300, "Average_qty" : 30, "count" : 1 }

这里的结果显示,账单日期字段的文档被分组,并显示了总价、平均数量以及该日期完成的账单数量。

示例 2:$group on multiple keys (在多个键上进行分组)

在此示例中,我们将按账单日期和项目名称字段分组并显示这些字段(总价、平均数量和计算同一日期的账单数量)。

输出

{ "_id" : { 
            "date_of_bill" : "13/04/2015", 
            "item" : "Blue box"
          }
          "Total_price" : 875, 
          "Average_qty" : 17.5, 
          "count" : 2 
}
{ "_id" : { 
            "date_of_bill" : "05/12/2014", 
            "item" : "Light Red box"
          }
          "Total_price" : 300, 
          "Average_qty" : 20, 
          "count" : 1
}

{ "_id" : { 
            "date_of_bill" : "05/12/2014", 
            "item" : "Red box"
          }
          "Total_price" : 500, 
          "Average_qty" : 12.5, 
          "count" : 2
}
{ "_id" : { 
            "date_of_bill" : "17/12/2014", 
            "item" : "Green box"
          }
          "Total_price" : 2800, 
          "Average_qty" : 28.3333333, 
          "count" : 3
}
{ "_id" : { 
            "date_of_bill" : "07/02/2014", 
            "item" : "White box"
          }
          "Total_price" : 200, 
          "Average_qty" : 25, 
          "count" : 1
}
{ "_id" : { 
            "date_of_bill" : "22/04/2020", 
            "item" : "Black box"
          }
          "Total_price" : 300, 
          "Average_qty" : 30, 
          "count" : 1
}

示例 3:$group on multiple keys with $match (在多个键上结合 $match 进行分组)

在此示例中,我们将按账单日期和项目名称字段分组并显示这些字段(总价、平均数量以及账单日期为 2014 年 12 月 5 日的文档的账单数量)。

输出

{ "_id" : { 
            "date_of_bill" : "05/12/2014", 
            "item" : "Light Red box"
          }
          "Total_price" : 300, 
          "Average_qty" : 20, 
          "count" : 1
}

{ "_id" : { 
            "date_of_bill" : "05/12/2014", 
            "item" : "Red box"
          }
          "Total_price" : 500, 
          "Average_qty" : 12.5, 
          "count" : 2
}