11 年级数学 第 13 章:极限和导数的 NCERT 解决方案

2024年10月1日 | 阅读56分钟

练习 13.1

计算练习1到22中的以下极限。

1. limx → 3 x + 3

解决方案

代入 x = 3,

limx → 3 x + 3 = 3 + 3 = 6

2. limx → π (x - 22/7)

解决方案

代入 x = π,

limx → π (x - 22/7) = π - 22/7

3. limr → 1 πr2

解决方案

代入 r = 1,

limr → 1 πr2 = π(1)2 = π

4. limx → 4 (4x + 3)/(x - 2)

解决方案

代入 x = 4,

limx → 4 (4x + 3)/(x - 2) = (4(4) + 3)/(4 - 2)

= (16 + 3)/2 = 19/2

5. limx → -1 (x10 + x5 + 1)/(x - 1)

解决方案

代入 x = -1,

limx → -1 (x10 + x5 + 1)/(x - 1) = ((-1)10 + (-1)5 + 1)/(-1 - 1)

= (1 - 1 + 1)/(-2)

= -1/2

6. limx → 0 ((x + 1)5 - 1)/x

解决方案

代入 x = 0,

limx → 0 ((x + 1)5 - 1)/x = ((0 + 1)5 - 1)/0

分母为0。因此,给定极限未定义。

设 x + 1 = y ⇒ x = y - 1

因此,

limy → 1 (y5 - 1)/(y - 1)

= limy → 1 (y5 - 15)/(y - 1)

我们知道 limx → a (xn - an)/(x - a) = nan - 1。因此,

limy → 1 (y5 - 15)/(y - 1)

= 5(1)5 - 1 = 5(1)4 = 5

7. limx → 2 (3x2 - x - 10)/(x2 - 4)

解决方案

代入 x = 2,

limx → 2 (3x2 - x - 10)/(x2 - 4) = (3(2)2 - 2 - 10)/(22 - 4)

= (3(4) - 12)/(4 - 4)

= (12 - 12)/(4 - 4) = 0/0

极限为0/0。因此,

将 limx → 2 (3x2 - x - 10)/(x2 - 4) 的分子和分母因式分解

= limx → 2 (3x2 - 6x + 5x - 10)/(x2 - 22)

= limx → 2 (3x(x - 2) + 5(x - 2))/(x + 2)(x - 2)

= limx → 2 (x - 2)(3x + 5)/(x + 2)(x - 2)

= limx → 2 (3x + 5)/(x + 2)

现在,代入 x = 2,

limx → 2 (3x + 5)/(x + 2) = (3(2) + 5)/(2 + 2)

= (6 + 5)/4 = 11/4

8. limx → 3 (x4 - 81)/(2x2 - 5x - 3)

解决方案

代入 x = 3,

limx → 3 (x4 - 81)/(2x2 - 5x - 3) = (34 - 81)/(2(3)2 - 5(3) - 3)

= (81 - 81)/(2(9) - 15 - 3)

= (81 - 81)/(18 - 18) = 0/0

极限为0/0。因此,

将 limx → 3 (x4 - 81)/(2x2 - 5x - 3) 的分子和分母因式分解

= limx → 3 (x4 - 34)/(2x2 - 6x + x - 3)

= limx → 3 ((x2)2 - 92)/(2x(x - 3) + 1(x - 3))

= limx → 3 (x2 - 9)(x2 + 9)/(x - 3)(2x + 1)

= limx → 3 (x2 - 32)(x2 + 9)/(x - 3)(2x + 1)

= limx → 3 (x - 3)(x + 3)(x2 + 9)/(x - 3)(2x + 1)

= limx → 3 (x + 3)(x2 + 9)/(2x + 1)

现在,代入 x = 3,

limx → 3 (x + 3)(x2 + 9)/(2x + 1) = (3 + 3)(32 + 9)/(2(3) + 1)

= (6)(9 + 9)/(6 + 1)

= (6)(18)/(7)

= 108/7

9. limx → 0 (ax + b)/(cx + 1)

解决方案

代入 x = 0,

limx → 0 (ax + b)/(cx + 1) = (0 + b)/(0 + 1)

= b/1 = b

10. limz → 1 (z1/3 - 1)/(z1/6 - 1)

解决方案

代入 z = 1,

limz → 1 (z1/3 - 1)/(z1/6 - 1) = (11/3 - 1)/(11/6 - 1)

= (1 - 1)/(1 - 1) = 0/0

极限为0/0。因此,

将 limz → 1 (z1/3 - 1)/(z1/6 - 1) 的分子和分母因式分解

= limz → 1 ((z1/6)2 - 12)/(z1/6 - 1)

= limz → 1 (z1/6 - 1)(z1/6 + 1)/(z1/6 - 1)

= limz → 1 z1/6 + 1

现在,代入 z = 1,

limz → 1 z1/6 + 1 = 11/6 + 1 = 1 + 1

= 2

11. limx → 1 (ax2 + bx + c)/(cx2 + bx + a),a + b + c ≠ 0

解决方案

代入 x = 1,

limx → 1 (ax2 + bx + c)/(cx2 + bx + a) = (a(1)2 + b(1) + c)/(c(1)2 + b(1) + a)

= (a + b + c)/(a + b + c) = 1

12. limx → -2 (1/x + 1/2)/(x + 2)

解决方案

代入 x = -2,

limx → -2 (1/x + 1/2)/(x + 2) = (1/(-2) + 1/2)/(-2 + 2)

= (1/2 - 1/2)/(2 - 2)

= 0/0

极限为0/0。因此,

将 limx → -2 (1/x + 1/2)/(x + 2) 的分子和分母因式分解

= limx → -2 ((2 + x)/2x)/(x+2)

= limx → -2 ((2 + x)/2x)/(x + 2)

= limx → -2 1/2x

现在,代入 x = -2,

limx → -2 1/2x = 1/2(-2) = -1/4

13. limx → 0 sin ax/bx

解决方案

代入 x = 0,

limx → 0 sin ax/bx = sin a(0)/b(0)

= sin 0/b(0)

= 0/0

极限为0/0。因此,

将 limx → 0 sin ax/bx 的分子和分母因式分解

表达式乘以并除以 a

limx → 0 sin ax/bx × a/a

= limx → 0 sin ax/ax × a/b

= a/b × limx → 0 sin ax/ax

我们知道

limx → 0 sin x/x = 1

因此,

a/b × limx → 0 sin ax/ax = 1 × a/b

= a/b

14. limx → 0 sin ax/sin bx,a, b ≠ 0

解决方案

代入 x = 0,

limx → 0 sin ax/sin bx = sin a(0)/sin b(0)

= sin 0/sin 0

= 0/0

极限为0/0。因此,

将 limx → 0 sin ax/sin bx 的分子和分母因式分解

分子乘以并除以 ax,分母乘以并除以 bx

limx → 0 (sin ax/ax × ax)/(sin bx/bx × bx)

= a/b × {limax → 0 (sin ax/ax)}/{limbx → 0 (sin bx/bx)}

我们知道

limx → 0 sin x/x = 1

因此,

a/b × {limax → 0 (sin ax/ax)}/{limbx → 0 (sin bx/bx)} = a/b × (1)/(1)

= a/b

15. limx → π sin (π - x)/π(π - x)

解决方案

代入 x = π,

limx → π sin (π - x)/π(π - x) = sin (π - π)/π(π - π)

= sin 0/π(0)

= 0/0

极限为0/0。因此,

将 limx → π sin (π - x)/π(π - x) 的分子和分母因式分解

= limπ - x → 0 sin (π - x)/π(π - x)

= 1/π × limπ - x → 0 sin (π - x)/(π - x)

我们知道

limx → 0 sin x/x = 1

因此,

1/π × limπ - x → 0 sin (π - x)/(π - x) = 1/π × 1

= 1/π

16. limx → 0 cos x/(π - x)

解决方案

代入 x = 0,

limx → 0 cos x/(π - x) = cos 0/(π - 0)

= 1/π

17. limx → 0 (cos 2x - 1)/(cos x - 1)

解决方案

代入 x = 0,

limx → 0 (cos 2x - 1)/(cos x - 1) = (cos 2(0) - 1)/(cos 0 - 1)

= (cos 0 - 1)/(cos 0 - 1)

= (1 - 1)/(1 - 1)

= 0/0

极限为0/0。因此,

将 limx → 0 (cos 2x - 1)/(cos x - 1) 的分子和分母因式分解

= limx → 0 (1 - 2 sin2 x -1)/(1 - 2 sin2 x/2 -1)

= limx → 0 (-2 sin2 x)/(-2 sin2 x/2)

= limx → 0 sin2 x/sin2 x/2

分子乘以并除以 x2,分母乘以并除以 x2/4 = (x/2)2

limx → 0 (sin2 x/x2 × x2)/[(sin2 x/2)/(x/2)2 × x2/4]

= 4 (limx → 0 sin2 x/x2)/(limx → 0 sin2 x/2/(x/2)2)

= 4 (limx → 0 sin x/x)2/(limx → 0 sin x/2/(x/2))2

我们知道

limx → 0 sin x/x = 1

因此,

4 (limx → 0 sin x/x)2/(limx → 0 sin x/2/(x/2))2 = 4 (1)/(1)

= 4

18. limx → 0 (ax + x cos x)/(b sin x)

解决方案

代入 x = 0,

limx → 0 (ax + x cos x)/(b sin x) = (a(0) + 0 cos 0)

= (0 + 0) = 0

极限为0/0。因此,

将 limx → 0 (ax + x cos x)/(b sin x) 的分子和分母因式分解

= limx → 0 x(a + cos x)/(b sin x)

= 1/b × limx → 0 x(a + cos x)/sin x

= 1/b × limx → 0 x/sin x × limx → 0 (a + cos x)

= 1/b × 1/(limx → 0 sin x/x) × limx → 0 (a + cos x)

我们知道

limx → 0 sin x/x = 1

因此,

1/b × 1/(limx → 0 sin x/x) × limx → 0 (a + cos x)

= 1/b × 1 × limx → 0 (a + cos x)

现在,代入 x = 0,

1/b × 1 × limx → 0 (a + cos x) = 1/b × limx → 0 (a + cos 0)

= 1/b × (a + cos 0)

= (a + 1)/b

19. limx → 0 x sec x

解决方案

代入 x = 0

limx → 0 x sec x = 0 (sec 0) = 0

20. limx → 0 (sin ax + bx)/(ax + sin bx),a, b, a + b ≠ 0

解决方案

代入 x = 0,

= (sin a(0) + b(0))/(a(0) + sin b(0))

= (sin 0 + 0)/(0 + sin 0)

= sin 0/sin 0 = 0/0

极限为0/0。因此,

将 limx → 0 (sin ax + bx)/(ax + sin bx) 的分子和分母因式分解

= limx → 0 (sin (ax/ax)ax + bx)/(ax + sin (bx/bx)bx)

= (limax → 0 sin (ax/ax) × limx → 0 ax + limx → 0 bx)/(limx → 0 ax + limbx → 0 sin (bx/bx) × limx → 0 bx)

我们知道

limx → 0 sin x/x = 1

因此,

= (1 × limx → 0 ax + limx → 0 bx)/(limx → 0 ax + 1 × limx → 0 bx)

= (limx → 0 ax + limx → 0 bx)/(limx → 0 ax + limx → 0 bx)

= 1

21. limx → 0 (cosec x - cot x)

解决方案

当 x = 0 时,cosec x 和 cot x 都未定义。因此,

将 limx → 0 (cosec x - cot x) 的分子和分母因式分解

= limx → 0 (1/sin x - cos x/sin x)

= limx → 0 (1 - cos x)/sin x

= limx → 0 (2 sin2 x/2)/2 sin x/2 cos x/2

= limx → 0 (sin x/2)/cos x/2

= limx → 0 tan x/2

代入 x = 0,

limx → 0 tan x/2 = tan 0/2 = tan 0 = 0

22. limx → π/2 tan 2x/(x - π/2)

解决方案

代入 x = π/2,

limx → π/2 tan 2x/(x - π/2) = tan 2(π/2)/(π/2 - π/2)

= tan π/(π/2 - π/2) = 0/0

极限为0/0。因此,

将 limx → π/2 tan 2x/(x - π/2) 的分子和分母因式分解

设 x - π/2 = y,则 x → π/2 = y → 0

因此,

limx → π/2 tan 2x/(x - π/2) = limy → 0 tan 2(y + π/2)/y

= limy → 0 tan (2y + π)/y

= limy → 0 tan (2y)/y

= limy → 0 sin 2y/y cos 2y

乘以并除以 2

= limy → 0 sin 2y/2y × 2/cos 2y

= lim2y → 0 sin 2y/2y × limy → 0 2/cos 2y

我们知道

limx → 0 sin x/x = 1

因此,

lim2y → 0 sin 2y/2y × limy → 0 2/cos 2y

= 1 × limy → 0 2/cos 2y

现在,代入 y = 0,

limy → 0 2/cos 2y = 2/cos 2(0) = 2/cos 0

= 2

23. 求 limx → 0 f(x) 和 limx → 1 f(x),其中 NCERT Solutions Class 11th Maths Chapter 13: Limits and Derivatives

解决方案

limx → 0- f(x) = limx → 0 (2x + 3)

代入 x = 0,

limx → 0 (2x + 3) = 2(0) + 3 = 0 + 3 = 3

并且

limx → 0+ f(x) = limx → 0 3(x + 1)

代入 x = 0,

limx → 0 3(x + 1) = 3(0 + 1) = 3(1) = 3

因此,limx → 0- f(x) = limx → 0+ f(x) = limx → 0 f(x) = 3

limx → 1- f(x) = limx → 1 3(x + 1)

代入 x = 1,

limx → 1 3(x + 1) = 3(1 + 1) = 3(2) = 6

并且

limx → 1+ f(x) = limx → 1 3(x + 1)

代入 x = 1,

limx → 1 3(x + 1) = 3(1 + 1) = 3(2) = 6

因此,limx → 1- f(x) = limx → 1+ f(x) = limx → 1 f(x) = 6

24. 求 limx → 1 f(x),其中 NCERT Solutions Class 11th Maths Chapter 13: Limits and Derivatives

解决方案

limx → 1- f(x) = limx → 1 (x2- 1)

代入 x = 1,

limx → 1 (x2- 1) = 12 - 1 = 1 - 1 = 0

并且

limx → 1+ f(x) = limx → 1 (-x2- 1)

代入 x = 1,

limx → 1 (-x2- 1) = (-12 - 1) = (-1 - 1) = -2

现在,limx → 1- f(x) ≠ limx → 1+ f(x)

因此,limx → 1 f(x) 不存在。

25. 求 limx → 0 f(x),其中 NCERT Solutions Class 11th Maths Chapter 13: Limits and Derivatives

解决方案

limx → 0- f(x) = limx → 0 (|x|/x)

我们知道当 x 为负数时,|x| = -x。因此,

limx → 0 (|x|/x) = limx → 0 (-x/x)

= limx → 0 (-1)

= -1

并且

limx → 0+ f(x) = limx → 0 (|x|/x)

我们知道当 x 为正数时,|x| = x。因此,

limx → 0 (|x|/x) = limx → 0 (x/x)

= limx → 0 (1)

= 1

现在,limx → 0- f(x) ≠ limx → 0+ f(x)

因此,limx → 0 f(x) 不存在。

26. 求 limx → 0 f(x),其中 NCERT Solutions Class 11th Maths Chapter 13: Limits and Derivatives

解决方案

limx → 0- f(x) = limx → 0 (x/|x|)

我们知道当 x 为负数时,|x| = -x。因此,

limx → 0 (x/|x|) = limx → 0 (x/-x)

= limx → 0 (-1)

= -1

并且

limx → 0+ f(x) = limx → 0 (x/|x|)

我们知道当 x 为正数时,|x| = x。因此,

limx → 0 (x/|x|) = limx → 0 (x/x)

= limx → 0 (1)

= 1

现在,limx → 0- f(x) ≠ limx → 0+ f(x)

因此,limx → 0 f(x) 不存在。

27. 求 limx → 5 f(x),其中 f(x) = |x| - 5。

解决方案

limx → 5- f(x) = limx → 5 (|x| - 5)

= limx → 5 (x - 5)

代入 x = 5,

= limx → 5 (x - 5) = 5 - 5

= 0

并且

limx → 5+ f(x) = limx → 5 (|x| - 5)

= limx → 5 (x - 5)

代入 x = 5,

= limx → 5 (x - 5) = 5 - 5

= 0

因此,limx → 5- f(x) = limx → 5+ f(x) = limx → 5 f(x) = 0。

28. 假设 NCERT Solutions Class 11th Maths Chapter 13: Limits and Derivatives 且若 limx → 1 f(x) = f(1) 则 a 和 b 的可能值是多少?

解决方案

limx → 1- f(x) = limx → 1 (a + bx)

代入 x = 1,

limx → 1 (a + bx) = (a + b(1))

= a + b

并且

limx → 1+ f(x) = limx → 1 (b - ax)

代入 x = 1,

limx → 1 (b - ax) = (b - a(1))

= b - a

并且

limx → 1 f(x) = f(1) = 4

现在,limx → 1- f(x) = limx → 1+ f(x) = limx → 1 f(x) = 4。因此,

a + b = b - a = 4

a + b = 4 且 b - a = 4

两方程相加

a + b + b - a = 4 + 4

2b = 8

b = 4

所以,

a + 4 = 4

a = 0

因此,a 和 b 的可能值分别为 0 和 4。

29. 设 a1, a2, . . ., an 为固定的实数,并定义函数

f(x) = (x - a1) (x - a2) … (x - an)。

limx → a1f(x) 是什么?对于某些 a ≠ a1, a2, . . ., an,计算 limx → a f(x)?

解决方案

limx → a1= limx → a1[(x - a1) (x - a2) … (x - an)]

= [limx → a1(x - a1)] [limx → a1(x - a2)] … [limx → a1(x - an)]

代入 x = a1

[limx → a1(x - a1)] [limx → a1(x - a2)] … [limx → a1(x - an)]

= (a1 - a1) (a1 - a2) … (a1 - an)

= 0(a1 - a2) … (a1 - an) = 0

因此,limx → a1f(x) = 0。

limx → a = limx → a [(x - a1) (x - a2) … (x - an)]

= [limx → a (x - a1)] [limx → a (x - a2)] … [limx → a (x - an)]

代入 x = a,

[limx → a (x - a1)] [limx → a (x - a2)] … [limx → a (x - an)]

= (a - a1) (a - a2) … (a - an)

因此,limx → a f(x) = (a - a1) (a - a2) … (a - an)。

30. 若 NCERT Solutions Class 11th Maths Chapter 13: Limits and Derivatives 对于 a 的何值,limx → a f(x) 存在?

解决方案

当 a < 0 时

limx → a- f(x) = limx → a- (|x| + 1)

我们知道当 x 为负数时,|x| = -x。因此,

limx → a- (|x| + 1) = limx → a (-x + 1)

代入 x = a,

limx → a (-x + 1) = -a + 1

并且

limx → a+ f(x) = limx → a+ (|x| + 1)

我们知道当 x 为负数时,|x| = -x。因此,

limx → a+ (|x| + 1) = limx → a (-x + 1)

代入 x = a,

limx → a (-x + 1) = -a + 1

现在,limx → a- f(x) = limx → a+ f(x) = limx → a f(x) = -a + 1。因此,

limx → a f(x) 存在于 x = a;a < 0。

当 a = 0 时

limx → 0- f(x) = limx → 0- (|x| + 1)

我们知道当 x 为负数时,|x| = -x。因此,

limx → 0- (|x| + 1) = limx → 0 (-x + 1)

代入 x = 0,

limx → 0 (-x + 1) = -0 + 1

= 1

并且

limx → 0+ f(x) = limx → 0+ (|x| - 1)

我们知道当 x 为正数时,|x| = x。因此,

limx → 0+ (|x| - 1) = limx → 0 (x - 1)

代入 x = 0,

limx → 0 (x - 1) = 0 - 1

= -1

现在,limx → 0- f(x) ≠ limx → 0+ f(x)。因此,limx → 0 f(x) 不存在。

当 a > 0 时

limx → a- f(x) = limx → a- (|x| - 1)

我们知道当 x 为正数时,|x| = x。因此,

limx → a- (|x| - 1) = limx → a (x - 1)

代入 x = a,

limx → a (x - 1) = a - 1

并且

limx → a+ f(x) = limx → a+ (|x| - 1)

我们知道当 x 为正数时,|x| = x。因此,

limx → a+ (|x| - 1) = limx → a (x - 1)

代入 x = a,

limx → a (x - 1) = a - 1

现在,limx → a- f(x) = limx → a+ f(x) = limx → a f(x) = a - 1。因此,

limx → a f(x) 存在于 x = a;a > 0。

31. 如果函数 f(x) 满足 limx → 1 (f(x) - 2)/(x2 - 1) = π,计算 limx → 1 f(x)。

解决方案

f(x) 满足 limx → 1 (f(x) - 2)/(x2 - 1) = π。所以,

limx → 1 (f(x) - 2)/limx → 1 (x2 - 1) = π

limx → 1 (f(x) - 2) = π limx → 1 (x2 - 1)

代入 x = 1,

limx → 1 (f(x) - 2) = π limx → 1 (12 - 1)

limx → 1 (f(x) - 2) = π limx → 1 (1 - 1)

limx → 1 (f(x) - 2) = π limx → 1 0

limx → 1 f(x) - limx → 1 2 = 0

limx → 1 f(x) - 2 = 0

limx → 1 f(x) = 2

32. 若 NCERT Solutions Class 11th Maths Chapter 13: Limits and Derivatives 对于哪些整数 m 和 n,limx → 0 f(x) 和 limx → 1 f(x) 都存在?

解决方案

limx → 0- f(x) = limx → 0 (mx2+ n)

代入 x = 0,

limx → 0 (mx2+ n) = m(0) + n

= 0 + n

= n

并且

limx → 0+ f(x) = limx → 0 (nx + m)

代入 x = 0,

limx → 0 (nx + m) = n(0) + m

= 0 + m

= m

现在,如果 limx → 0- f(x) = limx → 0+ f(x),即 n = m,则 limx → 0 f(x) 存在。

limx → 1- f(x) = limx → 1 (nx + m)

代入 x = 1,

limx → 1 (nx + m) = n(1) + m

= n + m

并且

limx → 1+ f(x) = limx → 1 (nx3 + m)

代入 x = 1,

limx → 1 (nx + m) = n(1)3 + m

= n(1) + m

= n + m

因此,limx → 1+ f(x) = limx → 1- f(x) = limx → 1 f(x)。

因此,对于 m 和 n 的任何整数值,limx → 1 f(x) 存在。

练习 13.2

1. 求 x2 - 2 在 x = 10 处的导数。

解决方案

设 x2 - x = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

对于 x = 10

f'(10) = limh → 0 (f(10 + h) - f(10))/h

= limh → 0 ((10 + h)2 - 2 - (102 - 2))/h

= limh → 0 (100 + h2 + 20h - 2 - 100 + 2)/h

= limh → 0 (h2 + 20h)/h

= limh → 0 h(h + 20)/h

= limh → 0 (h + 20)

当 h = 0 时取极限,

limh → 0 (h + 20) = 0 + 20 = 20

2. 求 x 在 x = 1 处的导数。

解决方案

设 x = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

对于 x = 1

f'(1) = limh → 0 (f(1 + h) - f(1))/h

= limh → 0 (1 + h - 1)/h

= limh → 0 h/h

= limh → 0 1

= 1

3. 求 99x 在 x = 100 处的导数。

解决方案

设 99x = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

对于 x = 100

f'(100) = limh → 0 (f(100 + h) - f(100))/h

= limh → 0 (99(100 + h) - 99(100))/h

= limh → 0 (9900 + 99h - 99100)/h

= limh → 0 99h/h

= limh → 0 99

= 99

4. 从第一原理求以下函数的导数。

(i) x3- 27 (ii) (x - 1)(x - 2)

(iii) 1/x2 (iv) (x + 1)/(x - 1)

解决方案

(i) 设 x3- 27 = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

= limh → 0 ((x + h)3 - 27 - (x3- 27))/h

= limh → 0 (x3+ h3 + 3x2h + 3xh2 - 27 - x3+ 27)/h

= limh → 0 (h3 + 3x2h + 3xh2)/h

= limh → 0 h(h2 + 3x2 + 3xh)/h

= limh → 0 (h2 + 3x2 + 3xh)

当 h = 0 时取极限,

limh → 0 (h2 + 3x2 + 3xh) = (02 + 3x2+ 3x(0))

= 0 + 3x2+ 0

= 3x2

(ii) 设 (x - 1)(x - 2) = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

= limh → 0 ((x + h - 1)(x + h - 2) - (x - 1)(x - 2))/h

= limh → 0 (x2 + xh - 2x + xh + h2 - 2h - x - h + 2 - (x2 - x - 2x + 2))/h

= limh → 0 (x2 + 2xh - 3x + h2 - 3h + 2 - x2 + x + 2x - 2)/h

= limh → 0 (2xh + h2 - 3h)/h

= limh → 0 h(2x + h - 3)/h

= limh → 0 (2x + h - 3)

当 h = 0 时取极限,

limh → 0 (2x + h - 3) = 2x + 0 - 3

= 2x - 3

(iii) 设 1/x2 = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

= limh → 0 (1/(x + h)2 - 1/x2)/h

= limh → 0 (x2 - (x + h)2)/x2(x + h)2h

= limh → 0 (x2 - x2 - h2 - 2xh)/x2(x + h)2h

= limh → 0 (-h2 - 2xh)/x2(x + h)2h

= limh → 0 h(-h - 2x)/x2(x + h)2h

= limh → 0 (-h - 2x)/x2(x + h)2

当 h = 0 时取极限,

limh → 0 (-h - 2x)/x2(x + h)2

= (-0 - 2x)/x2(x + 0)2 = (-2x)/x2(x2)

= -2/x3

(iv) 设 (x + 1)/(x - 1) = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

= limh → 0 ((x + h + 1)/(x + h - 1) - (x + 1)/(x - 1))/h

= limh → 0 ((x + h + 1)(x - 1) - (x + 1)(x + h - 1))/h(x + h - 1)(x - 1)

= limh → 0 (x2 - x + xh - h + x - 1 - x2 - xh + x - x - h + 1)/h(x + h - 1)(x - 1)

= limh → 0 (-2h)/h(x + h - 1)(x - 1)

= limh → 0 (-2)/(x + h - 1)(x - 1)

当 h = 0 时取极限,

limh → 0 (-2)/(x + h - 1)(x - 1) = (-2)/(x + 0 - 1)(x - 1)

= -2/(x - 1)(x - 1)

= -2/(x - 1)2

5. 对于函数

f(x) = x100/100 + x99/99 + … + x2/2 + x + 1。

证明 f'(1) = 100f'(0)。

解决方案

f(x) = x100/100 + x99/99 + … + x2/2 + x + 1

两边求导

d/dx (f(x)) = d/dx [x100/100 + x99/99 + … + x2/2 + x + 1]

f'(x) = d/dx (x100/100) + d/dx (x99/99) + … + d/dx (x2/2) + d/dx (x) + d/dx

我们知道

d/dx (xn) = nxn - 1

因此,

f'(x) = 100x99/100 + 99x98/99 + … + 2x/2 + 1 + 0

f'(x) = x99+ x98 + … + x + 1

当 x = 0 时

f'(0) = 099+ 098 + … + 0 + 1

= 0 + 0 + … + 0 + 1

= 1

当 x = 1 时

f'(1) = 199+ 198 + … + 1 + 1

= 1 + 1 + … + 1 + 1

= 100 × 1

= 100 f'(0)

因此,证明完毕。

6. 对于某个固定的实数 a,求 xn + axn - 1 + a2xn - 2 + … + an - 1x + an 的导数。

解决方案

设 xn + axn - 1 + a2xn - 2 + … + an - 1x + an = f(x)

两边求导

d/dx (f(x)) = d/dx [xn + axn - 1 + a2xn - 2 + … + an - 1x + an]

f'(x) = d/dx (xn) + a d/dx (xn - 1) + a2 d/dx (xn - 2) + … + an - 1 d/dx (x) + an d/dx

我们知道

d/dx (xn) = nxn - 1

因此,

f'(x) = nxn - 1 + a (n - 1) xn - 2 + a2 (n - 2) xn - 3 + … + an - 1 (1) + an (0)

f'(x) = nxn - 1 + a (n - 1) xn - 2 + a2 (n - 2) xn - 3 + … + an - 1

7. 对于某些常数 a 和 b,求以下函数的导数

(i) (x - a)(x - b)

(ii) (ax2 + b)2

(iii) (x - a)/(x - b)

解决方案

(i) 设 (x - a)(x - b) = f(x)

f(x) = x2 - (a + b)x + ab

两边求导

d/dx (f(x)) = d/dx [x2 - (a + b)x + ab]

f'(x) = d/dx (x2) - d/dx ((a + b)x) + d/dx (ab)

f'(x) = d/dx (x2) - (a + b) d/dx (x) + (ab) d/dx (1)

我们知道

d/dx (xn) = nxn - 1

因此,

f'(x) = 2x - (a + b)(1) + ab (0)

f'(x) = 2x - a - b

(ii) 设 (ax2 + b)2 = f(x)

两边求导

d/dx (f(x)) = d/dx [(ax2 + b)2]

f'(x) = d/dx [a2x4 + b2 + 2abx2]

f'(x) = d/dx (a2x4) + d/dx (b2) + d/dx (2abx2)

f'(x) = a2 d/dx (x4) + b2 d/dx (1) + 2ab d/dx (x2)

我们知道

d/dx (xn) = nxn - 1

因此,

f'(x) = a2 (4x3)+ b2 (0) + 2ab (2x)

f'(x) = 4a2x3 + 4abx

f'(x) = 4ax (ax2 + b)

(iii) 设 (x - a)/(x - b) = f(x)

两边求导

d/dx (f(x)) = d/dx [(x - a)/(x - b)]

f'(x) = [(x - b) d/dx (x - a) - (x - a) d/dx (x - b)]/(x - b)2

f'(x) = [(x - b) {d/dx (x) - d/dx (a)} - (x - a) {d/dx (x) - d/dx (b)}]/(x - b)2

f'(x) = [(x - b) (1 - 0) - (x - a) (1 - 0)]/(x - b)2

f'(x) = [(x - b) - (x - a)]/(x - b)2

f'(x) = [x - b - x + a)]/(x - b)2

8. 对于某个常数 a,求 (xn - an)/(x - a) 的导数。

解决方案

设 (xn - an)/(x - a) = f(x)

两边求导

d/dx (f(x)) = d/dx [(xn - an)/(x - a)]

f'(x) = [(x - a) d/dx (xn - an) - (xn - an) d/dx (x - a)]/(x - a)2

f'(x) = [(x - a) {d/dx (xn) - d/dx (an)} - (xn - an) {d/dx (x) - d/dx (a)}]/(x - a)2

f'(x) = [(x - a) (nxn - 1 - 0) - (xn - an) (1 - 0)]/(x - a)2

f'(x) = [(x - a) (nxn - 1) - (xn - an)]/(x - a)2

f'(x) = [nxn - anxn - 1 - xn + an]/(x - a)2

9. 求以下函数的导数

(i) 2x - 3/4 (ii) (5x3 + 3x + 1)(x - 1)

(iii) x-3(5 + 3x) (iv) x5(3 - 6x-9)

(v) x-4(3 - 4x-5) (vi) 2/(x + 1) - x2/(3x - 1)

解决方案

(i) 设 2x - 3/4 = f(x)

两边求导

d/dx (f(x)) = d/dx (2x - 3/4)

f'(x) = 2 d/dx (x) - 3/4 d/dx (1)

f'(x) = 2(1) - 3/4 (0)

f'(x) = 2 - 0

f'(x) = 2

(ii) 设 (5x3 + 3x + 1)(x - 1) = f(x)

两边求导

d/dx (f(x)) = d/dx [(5x3 + 3x + 1)(x - 1)]

f'(x) = (x - 1) d/dx (5x3 + 3x + 1) + (5x3 + 3x + 1) d/dx (x - 1)

f'(x) = (x - 1) [5 d/dx (x3) + 3 d/dx (x) + d/dx (1)] + (5x3 + 3x + 1) [d/dx (x) - d/dx (1)]

f'(x) = (x - 1) [5(3x2) + 3(1) + 0] + (5x3 + 3x + 1) [1 - 0]

f'(x) = (x - 1) [15x2 + 3] + (5x3 + 3x + 1) (1)

f'(x) = 15x3 + 3x - 15x2 - 3 + 5x3 + 3x + 1

f'(x) = 20x3 - 15x2 + 6x - 2

(iii) 设 x-3(5 + 3x) = f(x)

两边求导

d/dx (f(x)) = d/dx [x-3(5 + 3x)]

f'(x) = x-3 d/dx (5 + 3x) + (5 + 3x) d/dx (x-3)

f'(x) = x-3 [5 d/dx (1) + 3 d/dx (x)] + (5 + 3x) (-3x-4)

f'(x) = x-3 [5(0) + 3(1)] + (-15x-4 - 9x-3)

f'(x) = x-3 (0 + 3) + (-15x-4 - 9x-3)

f'(x) = 3x-3 - 15x-4 - 9x-3

f'(x) = -15x-4 - 6x-3

f'(x) = -15/x4 - 6/x3

f'(x) = 3/x3 [-5/x - 2]

f'(x) = 3/x3 [(-5 - 2x)/x]

f'(x) = -3(5 + 2x)/x4

(iv) 设 x5(3 - 6x-9) = f(x)

两边求导

d/dx (f(x)) = d/dx [x5(3 - 6x-9)]

f'(x) = x5 d/dx (3 - 6x-9) + (3 - 6x-9) d/dx (x5)

f'(x) = x5 [3 d/dx (1) - 6 d/dx (x-9)] + (3 - 6x-9) (5x4)

f'(x) = x5 [3(0) - 6 (-9x-10)] + (3 - 6x-9) (5x4)

f'(x) = x5 [0 + 54x-10] + (15x4 - 30x-5)

f'(x) = 54x-5 + 15x4 - 30x-5

f'(x) = 24x-5 + 15x4

f'(x) = 24/x5 + 15x4

(v) 设 x-4(3 - 4x-5) = f(x)

两边求导

d/dx (f(x)) = d/dx [x-4(3 - 4x-5)]

f'(x) = x-4 d/dx (3 - 4x-5) + (3 - 4x-5) d/dx (x-4)

f'(x) = x-4 [3 d/dx (1) - 4 d/dx (x-5)] + (3 - 4x-5) (-4x-5)

f'(x) = x-4 [3(0) - 4 (-5x-6)] + (-12x-5 + 16x-10)

f'(x) = x-4 [0 + 20x-6] + (-12x-5 + 16x-10)

f'(x) = 20x-10 - 12x-5 + 16x-10

f'(x) = 36x-10 - 12x-5

f'(x) = 36/x10 - 12/x5

(vi) 设 2/(x + 1) - x2/(3x - 1) = f(x)

两边求导

d/dx (f(x)) = d/dx [2/(x + 1) - x2/(3x - 1)]

f'(x) = d/dx [2/(x + 1)] - d/dx [x2/(3x - 1)]

f'(x) = [(x + 1) d/dx (2) + 2 d/dx (x + 1)]/(x + 1)2 - [(3x - 1) d/dx (x2) - x2 d/dx (3x - 1)]/(3x - 1)2

f'(x) = [(x + 1)(0) + 2(d/dx (x) + d/dx (1))]/(x + 1)2 - [(3x - 1)(2x) - x2 (3 d/dx (x) - d/dx(1))]/(3x - 1)2

f'(x) = [0 + 2(1 + 0)]/(x + 1)2 - [(6x2 - 2x) - x2 (3(1) - 0)]/(3x - 1)2

f'(x) = [2]/(x + 1)2 - [6x2 - 2x - 3x2]/(3x - 1)2

f'(x) = 2/(x + 1)2 - [3x2 - 2x]/(3x - 1)2

f'(x) = 2/(x + 1)2 - x(3x - 2)]/(3x - 1)2

10. 从第一原理求 cos x 的导数。

解决方案

设 cos x = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (cos (x + h) - cos x)/h

f'(x) = limh → 0 (-2 sin ((x + h + x)/2) sin ((x + h - x)/2))/h

f'(x) = limh → 0 (-2 sin ((2x + h)/2) sin h/2)/h

f'(x) = limh → 0 -sin ((2x + h)/2) × limh → 0 sin h/2/(h/2)

取极限,

f'(x) = -sin ((2x + 0)/2) × 1

f'(x) = -sin (2x/2)

f'(x) = -sin x

11. 求以下函数的导数

(i) sin x cos x (ii) sec x (iii) 5 sec x + 4 cos x
(iv) cosec x (v) 3 cot x + 5 cosec x
(vi) 5 sin x - 6 cos x + 7 (vii) 2 tan x - 7 sec x

解决方案

(i) 设 sin x cos x = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (sin (x + h) cos (x + h) - sin x cos x)/h

乘以并除以 2

f'(x) = limh → 0 (2sin (x + h) cos (x + h) - 2sin x cos x)/2h

f'(x) = limh → 0 (sin 2(x + h) - sin 2x)/2h

f'(x) = limh → 0 (2 cos ((2x + 2h + 2x)/2) sin ((2x + 2h - 2x)/2)/2h

f'(x) = limh → 0 (2 cos ((4x + 2h)/2) sin (2h/2))/2h

f'(x) = limh → 0 (cos (2x + h) sin h)/h

f'(x) = limh → 0 cos (2x + h) × limh → 0 (sin h/h)

f'(x) = limh → 0 cos (2x + h) × 1

取极限,

f'(x) = cos (2x + 0)

f'(x) = cos 2x

(ii) 设 sec x = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (sec (x + h) - sec x)/h

f'(x) = limh → 0 (1/cos (x + h) - 1/cos x)/h

f'(x) = limh → 0 (cos x - cos (x + h))/h cos x cos (x + h)

f'(x) = limh → 0 [-2 sin ((x + x + h)/2) sin ((x - x - h)/2)]/h cos x cos (x + h)

f'(x) = limh → 0 [-2 sin ((2x + h)/2) sin (-h/2)]/h cos x cos (x + h)

f'(x) = limh → 0 [2 sin ((2x + h)/2) sin (h/2)]/h cos x cos (x + h)

f'(x) = limh → 0 [sin ((2x + h)/2)]/cos x cos (x + h) × limh/2 → 0 [sin (h/2)]/(h/2)

f'(x) = limh → 0 [sin ((2x + h)/2)]/cos x cos (x + h) × 1

取极限,

f'(x) = sin ((2x + 0)/2)/cos x cos (x + 0)

f'(x) = sin (2x/2)/cos x cos x

f'(x) = sin x/cos x × 1/cos x

f'(x) = tan x sec x

(iii) 设 5 sec x + 4 cos x = f(x)

f'(x) = 5 (sec x )' + 4 (cos x)'

设 sec x = f1(x)

根据第一原理

f'1(x) = limh → 0 (f(x + h) - f(x))/h

f'1(x) = limh → 0 (sec (x + h) - sec x)/h

f'1(x) = limh → 0 (1/cos (x + h) - 1/cos x)/h

f'1(x) = limh → 0 (cos x - cos (x + h))/h cos x cos (x + h)

f'1(x) = limh → 0 [-2 sin ((x + x + h)/2) sin ((x - x - h)/2)]/h cos x cos (x + h)

f'1(x) = limh → 0 [-2 sin ((2x + h)/2) sin (-h/2)]/h cos x cos (x + h)

f'1(x) = limh → 0 [2 sin ((2x + h)/2) sin (h/2)]/h cos x cos (x + h)

f'1(x) = limh → 0 [sin ((2x + h)/2)]/cos x cos (x + h) × limh/2 → 0 [sin (h/2)]/(h/2)

f'1(x) = limh → 0 [sin ((2x + h)/2)]/cos x cos (x + h) × 1

取极限,

f'1(x) = sin ((2x + 0)/2)/cos x cos (x + 0)

f'1(x) = sin (2x/2)/cos x cos x

f'1(x) = sin x/cos x × 1/cos x

f'1(x) = tan x sec x

设 cos x = f2(x)

根据第一原理

f'2(x) = limh → 0 (f(x + h) - f(x))/h

f'2(x) = limh → 0 (cos (x + h) - cos x)/h

f'2(x) = limh → 0 (-2 sin ((x + h + x)/2) sin ((x + h - x)/2))/h

f'2(x) = limh → 0 (-2 sin ((2x + h)/2) sin h/2)/h

f'2(x) = limh → 0 -sin ((2x + h)/2) × limh → 0 sin h/2/(h/2)

取极限,

f'2(x) = -sin ((2x + 0)/2) × 1

f'2(x) = -sin (2x/2)

f'2(x) = -sin x

因此,

f'(x) = 5(tan x sec x) + 4(-sin x)

f'(x) = 5 tan x sec x - 4 sin x

(iv) 设 cosec x = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (cosec (x + h) - cosec x)/h

f'(x) = limh → 0 (1/sin (x + h) - 1/sin x)/h

f'(x) = limh → 0 (sin x - sin (x + h))/h sin x sin (x + h)

f'(x) = limh → 0 [2 cos ((x + x + h)/2) sin ((x - x - h)/2)]/h sin x sin (x + h)

f'(x) = limh → 0 [2 cos ((2x + h)/2) sin (-h/2)]/h sin x sin (x + h)

f'(x) = limh → 0 [-2 cos ((2x + h)/2) sin (h/2)]/h sin x sin (x + h)

f'(x) = -limh → 0 [cos ((2x + h)/2)]/sin x sin (x + h) × limh/2 → 0 [sin (h/2)]/(h/2)

f'(x) = -limh → 0 [cos ((2x + h)/2)]/sin x sin (x + h) × 1

取极限,

f'(x) = -cos ((2x + 0)/2)/sin x sin (x + 0)

f'(x) = -cos (2x/2)/sin x sin x

f'(x) = -cos x/sin x × 1/sin x

f'(x) = -cot x cosec x

(v) 设 3 cot x + 5 cosec x = f(x)

f'(x) = 3 (cot x)' + 5 (cosec x)'

设 cot x = f1(x)

根据第一原理

f1'(x) = limh → 0 (f(x + h) - f(x))/h

f1'(x) = limh → 0 (cot (x + h) - cot x)/h

f1'(x) = limh → 0 (cos (x + h)/sin (x + h) - cos x/sin x)/h

f1'(x) = limh → 0 (sin x cos (x + h) - cos x sin (x + h))/h sin x sin (x + h)

f1'(x) = limh → 0 (sin (x - x - h))/h sin x sin (x + h)

f1'(x) = limh → 0 (sin (-h))/h sin x sin (x + h)

f1'(x) = limh → 0 (-sin h)/h sin x sin (x + h)

f1'(x) = -limh → 0 (sin h)/h sin x sin (x + h)

f1'(x) = -limh → 0 (sin h)/h × limh → 0 1/[sin x sin (x + h)]

f1'(x) = -1 × limh → 0 1/[sin x sin (x + h)]

取极限,

f1'(x) = -1 × 1/sin x sin (x + 0)

f1'(x) = -1 × 1/sin x sin x

f1'(x) = -1/sin2 x

f1'(x) = -cosec2 x

设 cosec x = f2(x)

根据第一原理

f2'(x) = limh → 0 (f2(x + h) - f2(x))/h

f'2(x) = limh → 0 (cosec (x + h) - cosec x)/h

f2'(x) = limh → 0 (1/sin (x + h) - 1/sin x)/h

f2'(x) = limh → 0 (sin x - sin (x + h))/h sin x sin (x + h)

f2'(x) = limh → 0 [2 cos ((x + x + h)/2) sin ((x - x - h)/2)]/h sin x sin (x + h)

f2'(x) = limh → 0 [2 cos ((2x + h)/2) sin (-h/2)]/h sin x sin (x + h)

f2'(x) = limh → 0 [-2 cos ((2x + h)/2) sin (h/2)]/h sin x sin (x + h)

f2'(x) = -limh → 0 [cos ((2x + h)/2)]/sin x sin (x + h) × limh/2 → 0 [sin (h/2)]/(h/2)

f2'(x) = -limh → 0[cos ((2x + h)/2)]/sin x sin (x + h) × 1

取极限,

f2'(x) = -cos((2x + 0)/2)/sin x sin (x + 0)

f2'(x) = -cos(2x/2)/sin x sin x

f2'(x) = -cos x/sin x × 1/sin x

f2'(x) = -cot x cosec x

因此,

f'(x) = 3 (-cosec2x) + 5 (-cot x cosec x)

f'(x) = -3 cosec2x - 5 cot x cosec x

(vi) 设 5 sin x - 6 cos x + 7 = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (5 sin (x + h) - 6 cos (x + h) + 7 - (5 sin x - 6 cos x + 7))/h

f'(x) = limh → 0 (5 sin (x + h) - 6 cos (x + h) + 7 - 5 sin x + 6 cos x - 7))/h

f'(x) = limh → 0 [5 {sin (x + h) - sin x} - 6 {cos (x + h) - cos x}]/h

f'(x) = 5 limh → 0 [sin (x + h) - sin x]/h - 6 limh → 0 [cos (x + h) - cos x]/h

f'(x) = 5limh → 0 [2 cos ((x + h + x)/2) sin ((x + h - x)/2)]/h - 6 limh → 0 [-2 sin ((x + h + x)/2) sin ((x + h - x)/2)]/h

f'(x) = 5 limh → 0 [2 cos ((2x + h)/2) sin (h/2)]/h + 6 limh → 0 [2 sin ((2x + h)/2) sin (h/2)]/h

f'(x) = 5 limh → 0 [cos ((2x + h)/2)] limh/2 → 0 [sin (h/2)]/(h/2) + 6 limh → 0 [sin ((2x + h)/2)]
limh/2 → 0 [sin (h/2)]/(h/2)

f'(x) = 5limh → 0 [cos ((2x + h)/2)] × 1 + 6 limh → 0 [sin ((2x + h)/2)] × 1

取极限,

f'(x) = 5 [cos ((2x + 0)/2)] + 6 [sin ((2x + 0)/2)]

f'(x) = 5 (cos (2x/2)) + 6 (sin (2x/2))

f'(x) = 5 cos x + 6 sin x

(vii) 设 2 tan x - 7 sec x = f(x)

f'(x) = 2 (tan x)' - 7 (sec x)'

设 tan x = f1(x)

根据第一原理

f1'(x) = limh → 0 (f1(x + h) - f1(x))/h

f1'(x) = limh → 0 (tan (x + h) - tan x)/h

f1'(x) = limh → 0 (sin (x + h)/cos (x + h) - sin x/cos x)/h

f1'(x) = limh → 0 (cos x sin (x + h) - cos (x + h) sin x)/h cos x cos (x + h)

乘以并除以 2

f1'(x) = limh → 0 (2 cos x sin (x + h) - 2 cos (x + h) sin x)/2h cos x cos (x + h)

f1'(x) = limh → 0 (sin (x + h + x) - sin (x - x - h) - sin (x + h + x) + sin (x + h - x))/2h cos x cos (x + h)

f1'(x) = limh → 0 (sin (2x + h) - sin (-h) - sin (2x + h) + sin h)/2h cos x cos (x + h)

f1'(x) = limh → 0 (sin h + sin h)/2h cos x cos (x + h)

f1'(x) = limh → 0 (2 sin h)/2h cos x cos (x + h)

f1'(x) = limh → 0 (sin h)/h cos x cos (x + h)

f1'(x) = limh → 0 (sin h)/h × limh → 0 1/cos x cos(x + h)

f1'(x) = 1 × limh → 0 1/cos x cos (x + h)

取极限,

f1'(x) = 1/cos x cos (x + 0)

f1'(x) = 1/cos x cos x

f1'(x) = sec2 x

设 sec x = f2(x)

根据第一原理

f'2(x) = limh → 0 (f(x + h) - f(x))/h

f'2(x) = limh → 0 (sec (x + h) - sec x)/h

f'2(x) = limh → 0 (1/cos (x + h) - 1/cos x)/h

f'2(x) = limh → 0 (cos x - cos (x + h))/h cos x cos (x + h)

f'2(x) = limh → 0 [-2 sin ((x + x + h)/2) sin ((x - x - h)/2)]/h cos x cos (x + h)

f'2(x) = limh → 0 [-2 sin ((2x + h)/2) sin (-h/2)]/h cos x cos (x + h)

f'2(x) = limh → 0 [2 sin ((2x + h)/2) sin (h/2)]/h cos x cos (x + h)

f'2(x) = limh → 0 [sin ((2x + h)/2)]/cos x cos (x + h) × limh/2 → 0 [sin (h/2)]/(h/2)

f'2(x) = limh → 0 [sin ((2x + h)/2)]/cos x cos (x + h) × 1

取极限,

f'2(x) = sin ((2x + 0)/2)/cos x cos (x + 0)

f'2(x) = sin (2x/2)/cos x cos x

f'2(x) = sin x/cos x × 1/cos x

f'2(x) = tan x sec x

因此,

f'(x) = 2(sec2 x) - 7(tan x sec x)

f'(x) = 2 sec2 x - 7 tan x sec x

杂项练习

1. 从第一原理求以下函数的导数

(i) -x (ii) (-x)-1 (iii) sin (x + 1) (iv) cos (x - π/8)

解决方案

(i) 设 -x = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (-(x + h) - (-x))/h

f'(x) = limh → 0 (-x - h + x))/h

f'(x) = limh → 0 (-h)/h

f'(x) = limh → 0 (-1)

f'(x) = -1

(ii) 设 (-x)-1 = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (-(x + h)-1 - (-x)-1)/h

f'(x) = limh → 0 (-1/(x + h) + 1/x)/h

f'(x) = limh → 0 (-x + x + h)/hx(x + h)

f'(x) = limh → 0 (h)/hx(x + h)

f'(x) = limh → 0 1/x(x + h)

f'(x) = 1/x(x)

f'(x) = 1/x2

(iii) 设 sin (x + 1) = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (sin (x + h + 1) - sin (x + 1))/h

f'(x) = limh → 0 [2 cos ((x + h + 1 + x + 1)/2) sin ((x + h + 1 - x - 1)/2)]/h

f'(x) = limh → 0 [2 cos ((2x + h + 2)/2) sin (h/2)]/h

h → 0

所以,h/2 → 0

f'(x) = limh → 0 [cos ((2x + h + 2)/2)] × limh/2 → 0 [sin (h/2)]/(h/2)

f'(x) = limh → 0 [cos ((2x + h + 2)/2)] × 1

f'(x) = limh → 0 [cos ((2x + h + 2)/2)] × 1

f'(x) = cos ((2x + 2)/2)

f'(x) = cos (x + 1)

(iv) 设 cos (x - π/8) = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (cos (x + h - π/8) - cos (x - π/8))/h

f'(x) = limh → 0 (cos (x + h - π/8) - cos (x - π/8))/h

f'(x) = limh → 0 (-2 sin ((x + h - π/8 + x - π/8)/2) sin ((x + h - π/8 - x + π/8)/2))/h

f'(x) = limh → 0 (-2 sin ((2x + h - π/4)/2) sin (h/2))/h

f'(x) = limh → 0 [-sin ((2x + h - π/4)/2)] × limh/2 → 0 [sin (h/2)]/(h/2)

f'(x) = limh → 0 [-sin ((2x + h - π/4)/2)] × 1

f'(x) = -sin ((2x + 0 - π/4)/2)

f'(x) = -sin (2(x - π/8)/2)

f'(x) = -sin (x - π/8)

求以下函数的导数(a、b、c、d、p、q、r 和 s 为固定的非零常数,m 和 n 为整数)

2. (x + a)

解决方案

设 (x + a) = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 ((x + h + a) - (x + a))/h

f'(x) = limh → 0 (x + h + a - x - a)/h

f'(x) = limh → 0 h/h

f'(x) = limh → 0 1

f'(x) = 1

3. (px + q) (r/x + s)

解决方案

设 (px + q) (r/x + s) = f(x)

两边求导

d/dx (f(x)) = d/dx [(px + q) (r/x + s)]

f'(x) = (px + q) d/dx (r/x + s) + (r/x + s) d/dx (px + q)

f'(x) = (px + q) d/dx (r/x + s) + (r/x + s) d/dx (px + q)

f'(x) = (px + q) [r d/dx (x-1) + d/dx (s)] + (r/x + s) [p d/dx (x) + d/dx (q)]

f'(x) = (px + q) [(-rx-2) + 0] + (r/x + s) [p(1) + 0]

f'(x) = -prx-1 - qrx-2 + pr/x + ps

f'(x) = -qrx-2 + ps

f'(x) = ps - qr/x2

4. (ax + b)(cx + d)2

解决方案

设 (ax + b)(cx + d)2 = f(x)

两边求导

d/dx (f(x)) = d/dx [(ax + b)(cx + d)2]

f'(x) = (ax + b) d/dx [(cx + d)2] + (cx + d)2 d/dx (ax + b)

f'(x) = (ax + b) [2(cx + d)1 d/dx (cx + d)] + (cx + d)2 [d/dx (ax) + d/dx (b)]

f'(x) = (ax + b) [2c(cx + d) {d/dx (x) + d/dx (d)}] + (cx + d)2 [a d/dx (x) + d/dx (b)]

f'(x) = (ax + b) [2c(cx + d) {1 + 0}] + (cx + d)2 [a(1) + 0]

f'(x) = (ax + b) [2c(cx + d)] + a(cx + d)2

f'(x) = 2c(acx2 + adx + bcx + bd) + a(c2x2 + d2 + 2cdx)

f'(x) = 2ac2x2 + 2acdx + 2bc2x + 2bcd + ac2x2 + ad2 + 2acdx

f'(x) = 3ac2x2 + ad2 + 2bc2x + 4acdx + 2bcd

5. (ax + b)/(cx + d)

解决方案

设 (ax + b)/(cx + d) = f(x)

两边求导

d/dx (f(x)) = d/dx [(ax + b)/(cx + d)]

f'(x) = [(cx + d) d/dx (ax + b) - (ax + b) d/dx (cx + d)]/(cx + d)2

f'(x) = [(cx + d) [a d/dx (x) + d/dx (b)] - (ax + b) [c d/dx (x) + d/dx (d)]]/(cx + d)2

f'(x) = [(cx + d) (a(1) + 0) - (ax + b) (c(1) + 0)]/(cx + d)2

f'(x) = [a(cx + d) - c(ax + b)]/(cx + d)2

f'(x) = [acx + ad - acx - bc]/(cx + d)2

f'(x) = [ad - bc]/(cx + d)2

6. (1 + 1/x)/(1 - 1/x)

解决方案

设 (1 + 1/x)/(1 - 1/x) = f(x)

两边求导

d/dx (f(x)) = d/dx [(1 + 1/x)/(1 - 1/x)]

f'(x) = [(1 - 1/x) d/dx (1 + 1/x) - (1 + 1/x) d/dx (1 - 1/x)]/(1 - 1/x)2

f'(x) = [(1 - 1/x) {d/dx (1) + d/dx (x-1)} - (1 + 1/x) {d/dx (1) - d/dx (x-1)}]/(1 - 1/x)2

f'(x) = [(1 - 1/x) {0 + (-x-2)} - (1 + 1/x) {0 - (-x-2)}]/(1 - 1/x)2

f'(x) = [(1 - x-1)(-x-2) - (1 + x-1)(x-2)]/(1 - 1/x)2

f'(x) = [-x-2 + x-3 - x-2 - x-3]/(1 - 1/x)2

f'(x) = [-2x-2]/[(x - 1)2/(x2)]

f'(x) = x2[-2x-2]/(x - 1)2

f'(x) = -2/(x - 1)2

7. 1/(ax2 + bx + c)

解决方案

设 1/(ax2 + bx + c) = f(x)

两边求导

d/dx (f(x)) = d/dx [1/(ax2 + bx + c)]

f'(x) = [(ax2 + bx + c) d/dx (1) - d/dx (ax2 + bx + c)]/(ax2 + bx + c)2

f'(x) = [(ax2 + bx + c) (0) - a {d/dx (x2) + b d/dx (x) + d/dx(c)}]/(ax2 + bx + c)2

f'(x) = [-a {(2x) + b(1) + 0}](ax2 + bx + c)2

f'(x) = -[2ax + ab](ax2 + bx + c)2

8. (ax + b)/(px2 + qx + r)

解决方案

设 (ax + b)/(px2 + qx + r) = f(x)

两边求导

d/dx (f(x)) = d/dx [(ax + b)/(px2 + qx + r)]

f'(x) = [(px2+ qx + r) d/dx (ax + b) - (ax + b) d/dx (px2 + qx + r)]/(px2 + qx + r)2

f'(x) = [(px2+ qx + r) {a d/dx (x) + d/dx (b)} - (ax + b) {p d/dx (x2) + q d/dx (x) + d/dx (r)}]/(px2 + qx + r)2

f'(x) = [(px2+ qx + r) {a(1) + 0} - (ax + b) {p(2x) + q(1) + 0}]/(px2 + qx + r)2

f'(x) = [(px2+ qx + r)a - (ax + b) {2px + q}]/(px2 + qx + r)2

f'(x) = [apx2+ aqx + ar - 2apx2 - aqx - 2bpx - bq]/(px2 + qx + r)2

f'(x) = [-apx2 + ar - 2bpx - bq]/(px2 + qx + r)2

9. (px2 + qx + r)/(ax + b)

解决方案

令 (px2 + qx + r)/(ax + b) = f(x)

两边求导

d/dx (f(x)) = d/dx [(px2 + qx + r)/(ax + b)]

f'(x) = [(ax + b) d/dx (px2 + qx + r) - (px2+ qx + r) d/dx (ax + b)]/(ax + b)2

f'(x) = [(ax + b) {p d/dx (x2) + q d/dx (x) + d/dx (r)} - (px2+ qx + r) {a d/dx (x) + d/dx (b)}]/(ax + b)2

f'(x) = [(ax + b) {p(2x) + q(1) + 0} - (px2+ qx + r) {a(1) + 0}]/(ax + b)2

f'(x) = [(ax + b) {2px + q} - (px2+ qx + r)a]/(ax + b)2

f'(x) = [2apx2 + aqx + 2bpx + bq - apx2 - aqx - ar]/(ax + b)2

f'(x) = [apx2 - ar + 2bpx + bq]/(ax + b)2

10. a/x4 - b/x2 + cos x

解决方案

令 a/x4 - b/x2 + cos x = f(x)

两边求导

d/dx (f(x)) = d/dx [a/x4 - b/x2 + cos x]

f'(x) = d/dx (a/x4) - d/dx (b/x2) + d/dx (cos x)

f'(x) = [x4 d/dx (a) - a d/dx (x4)]/x8 - [x2d/dx (b) - b d/dx (x2)]/x4 + (-sin x)

f'(x) = [x4 (0) - a(4x3)]/x8 - [x2(0) - b(2x)]/x4 - sin x

f'(x) = [-4ax3]/x8 - [-2bx]/x4 - sin x

f'(x) = -4a/x5 + 2b/x3 - sin x

11. 4√x - 2

解决方案

令 4√x - 2 = f(x)

两边求导

d/dx (f(x)) = d/dx [4√x - 2]

f'(x) = 4 d/dx (√x) - d/dx (2)

f'(x) = 4 d/dx (x1/2) - 0

f'(x) = 4 (1/2 × x-1/2)

f'(x) = 2x-1/2

f'(x) = 2/√x

12. (ax + b)n

解决方案

令 (ax + b)n = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 [(a(x + h) + b)n - (ax + b)n]/h

f'(x) = limh → 0 [(ax + b + ah)n - (ax + b)n]/h

f'(x) = limh → 0 [{(ax + b) (1 + ah/(ax + b))}n - (ax + b)n]/h

f'(x) = limh → 0 [{(ax + b) (1 + ah/(ax + b))}n - (ax + b)n]/h

f'(x) = limh → 0 [(ax + b)n {(1 + ah/(ax + b))n - 1}]/h

使用二项式定理

f'(x) = limh → 0 [(ax + b)n {(1n + nC1 1n - 1 (ah/(ax + b))1 + … + nCn 10 (ah/(ax + b))n) - 1}]/h

f'(x) = limh → 0 [(ax + b)n {1 + n!/1!(n - 1)! × (ah)/(ax + b) + nC2 (ah)2/(ax + b)2 + … + (ah)n/(ax + b)n - 1}]/h

f'(x) = limh → 0 [(ax + b)n {1 + n(ah)/(ax + b) + nC2 (ah)2/(ax + b)2 + … + (ah)n/(ax + b)n - 1}]/h

f'(x) = limh → 0 [(ax + b)n {n(ah)/(ax + b) + nC2 (ah)2/(ax + b)2 + … + (ah)n/(ax + b)n}]/h

f'(x) = limh → 0 [(ax + b)n {h(an)/(ax + b) + nC2 h2 (a)2/(ax + b)2 + … + hn (a)n/(ax + b)n}]/h

f'(x) = limh → 0 [(ax + b)n h {(an)/(ax + b) + nC2 h (a)2/(ax + b)2 + … + hn - 1 (a)n/(ax + b)n}]/h

f'(x) = limh → 0 [(ax + b)n {(an)/(ax + b) + nC2 h (a)2/(ax + b)2 + … + hn - 1 (a)n/(ax + b)n}]

f'(x) = (ax + b)n {(an)/(ax + b) + nC2 0 (a)2/(ax + b)2 + … + 0n - 1 (a)n/(ax + b)n}

f'(x) = (ax + b)n (an)/(ax + b) + 0

f'(x) = an(ax + b)n - 1

13. (ax + b)n (cx + d)m

解决方案

令 (ax + b)n (cx + d)m = f(x)

f'(x) = (cx + d)m ((ax + b)n)' + (ax + b)n ((cx + d)m)'

令 (ax + b)n = f1(x) 且 (cx + d)m = f2(x)

根据第一原理

f'1(x) = limh → 0 (f1(x + h) - f1(x))/h

f'1(x) = limh → 0 [(a(x + h) + b)n - (ax + b)n]/h

f'1(x) = limh → 0 [(ax + b + ah)n - (ax + b)n]/h

f'1(x) = limh → 0 [{(ax + b) (1 + ah/(ax + b))}n - (ax + b)n]/h

f'1(x) = limh → 0 [{(ax + b) (1 + ah/(ax + b))}n - (ax + b)n]/h

f'1(x) = limh → 0 [(ax + b)n {(1 + ah/(ax + b))n - 1}]/h

使用二项式定理

f'1(x) = limh → 0 [(ax + b)n {(1n + nC1 1n - 1 (ah/(ax + b))1 + … + nCn 10 (ah/(ax + b))n) - 1}]/h

f'1(x) = limh → 0 [(ax + b)n {1 + n!/1!(n - 1)! × (ah)/(ax + b) + nC2 (ah)2/(ax + b)2 + … + (ah)n/(ax + b)n - 1}]/h

f'1(x) = limh → 0 [(ax + b)n {1 + n(ah)/(ax + b) + nC2 (ah)2/(ax + b)2 + … + (ah)n/(ax + b)n - 1}]/h

f'1(x) = limh → 0 [(ax + b)n {n(ah)/(ax + b) + nC2 (ah)2/(ax + b)2 + … + (ah)n/(ax + b)n}]/h

f'1(x) = limh → 0 [(ax + b)n {h(an)/(ax + b) + nC2 h2 (a)2/(ax + b)2 + … + hn (a)n/(ax + b)n}]/h

f'1(x) = limh → 0 [(ax + b)n h {(an)/(ax + b) + nC2 h (a)2/(ax + b)2 + … + hn - 1 (a)n/(ax + b)n}]/h

f'1(x) = limh → 0 [(ax + b)n {(an)/(ax + b) + nC2 h (a)2/(ax + b)2 + … + hn - 1 (a)n/(ax + b)n}]

f'1(x) = (ax + b)n {(an)/(ax + b) + nC2 0 (a)2/(ax + b)2 + … + 0n - 1 (a)n/(ax + b)n}

f'1(x) = (ax + b)n (an)/(ax + b) + 0

f'1(x) = an(ax + b)n - 1

类似地,f2'(x) = mc(cx + d)m - 1

因此,

f'(x) = (cx + d)m an(ax + b)n - 1 + (ax + b)n mc(cx + d)m - 1

f'(x) = (cx + d)m - 1 (ax + b)n - 1 [(cx + d)an + (ax + b)mc]

14. sin (x + a)

解决方案

令 sin (x + a) = f(x)

根据第一原理

f'(x) = limh → 0 (f(x + h) - f(x))/h

f'(x) = limh → 0 (sin (x + h + a) - sin (x + a))/h

f'(x) = limh → 0 [2 cos ((x + h + a + x + a)/2) sin ((x + h + a - x - a)/2)]/h

f'(x) = limh → 0 [2 cos ((2x + h + 2a)/2) sin (h/2)]/h

f'(x) = limh → 0 cos ((2x + h + 2a)/2) × limh/2 → 0 [sin (h/2)]/(h/2)

f'(x) = limh → 0 cos ((2x + h + 2a)/2) × 1

f'(x) = cos ((2x + 0 + 2a)/2)

f'(x) = cos (2(x + a)/2)

f'(x) = cos (x + a)

15. cosec x cot x

解决方案

令 cosec x cot x = f(x)

f'(x) = cosec x (cot x)' + cot x (cosec x)'

设 cot x = f1(x)

根据第一原理

f1'(x) = limh → 0 (f(x + h) - f(x))/h

f1'(x) = limh → 0 (cot (x + h) - cot x)/h

f1'(x) = limh → 0 (cos (x + h)/sin (x + h) - cos x/sin x)/h

f1'(x) = limh → 0 (sin x cos (x + h) - cos x sin (x + h))/h sin x sin (x + h)

f1'(x) = limh → 0 (sin (x - x - h))/h sin x sin (x + h)

f1'(x) = limh → 0 (sin (-h))/h sin x sin (x + h)

f1'(x) = limh → 0 (-sin h)/h sin x sin (x + h)

f1'(x) = -limh → 0 (sin h)/h sin x sin (x + h)

f1'(x) = -limh → 0 (sin h)/h × limh → 0 1/[sin x sin (x + h)]

f1'(x) = -1 × limh → 0 1/[sin x sin (x + h)]

f1'(x) = -1 × 1/sin x sin (x + 0)

f1'(x) = -1 × 1/sin x sin x

f1'(x) = -1/sin2 x

f1'(x) = -cosec2 x

设 cosec x = f2(x)

根据第一原理

f2'(x) = limh → 0 (f2(x + h) - f2(x))/h

f'2(x) = limh → 0 (cosec (x + h) - cosec x)/h

f2'(x) = limh → 0 (1/sin (x + h) - 1/sin x)/h

f2'(x) = limh → 0 (sin x - sin (x + h))/h sin x sin (x + h)

f2'(x) = limh → 0 [2 cos ((x + x + h)/2) sin ((x - x - h)/2)]/h sin x sin (x + h)

f2'(x) = limh → 0 [2 cos ((2x + h)/2) sin (-h/2)]/h sin x sin (x + h)

f2'(x) = limh → 0 [-2 cos ((2x + h)/2) sin (h/2)]/h sin x sin (x + h)

f2'(x) = -limh → 0 [cos ((2x + h)/2)]/sin x sin (x + h) × limh/2 → 0 [sin (h/2)]/(h/2)

f2'(x) = -limh → 0[cos ((2x + h)/2)]/sin x sin (x + h) × 1

f2'(x) = -cos((2x + 0)/2)/sin x sin (x + 0)

f2'(x) = -cos(2x/2)/sin x sin x

f2'(x) = -cos x/sin x × 1/sin x

f2'(x) = -cot x cosec x

因此,

f'(x) = cosec x (-cosec2 x) + cot x (-cot x cosec x)

f'(x) = -cosec3 x - cot2 x cosec x

f'(x) = -cosec x (cosec2 x + cot2)

16. cos x/(1 + sin x)

解决方案

令 cos x/(1 + sin x) = f(x)

f'(x) = [(1 + sin x) d/dx (cos x) - cos x d/dx (1 + sinx)]/(1 + sin x)2

f'(x) = [(1 + sin x) (-sin x) - cos x {d/dx (1) + d/dx (sin x)}]/(1 + sin x)2

f'(x) = [-sin x - sin2x - cos x {0 + cos x}]/(1 + sin x)2

f'(x) = [-sin x - sin2x - cos2 x]/(1 + sin x)2

f'(x) = [-sin x - (sin2x + cos2 x)]/(1 + sin x)2

f'(x) = [-sin x - 1]/(1 + sin x)2

f'(x) = -[1 + sin x]/(1 + sin x)2

f'(x) = -1/(1 + sin x)

17. (sin x + cos x)/(sin x - cos x)

解决方案

令 (sin x + cos x)/(sin x - cos x) = f(x)

f'(x) = [(sin x - cos x) d/dx (sin x + cos x) - (sin x + cos x) d/dx (sin x - cos x)]/(sin x - cos x)2

f'(x) = [(sin x - cos x) {d/dx (sin x) + d/dx (cos x)} - (sin x + cos x) {d/dx (sin x) - d/dx (cos x)}]/(sin x - cos x)2

f'(x) = [(sin x - cos x) {cos x - sin x} - (sin x + cos x) {cos x + sin x}]/(sin x - cos x)2

f'(x) = [-(sin x - cos x)2 - (sin x + cos x)2]/(sin x - cos x)2

f'(x) = [-sin2 x - cos2 x + 2 sin x cos x - sin2 x - cos2 x - 2 sin x cos x]/(sin x - cos x)2

f'(x) = [-2 sin2 x - 2 cos2 x]/(sin x - cos x)2

f'(x) = [-2(sin2 x + cos2 x)]/(sin x - cos x)2

f'(x) = [-2(1)]/(sin x - cos x)2

f'(x) = -2/(sin x - cos x)2

18. (sec x - 1)/(sec x + 1)

解决方案

令 (sec x - 1)/(sec x + 1) = f(x)

f(x) = (1/cos x - 1)/(1/cos x + 1)

f(x) = [(1 - cos x)/cos x]/[(1 + cos x)/cos x]

f(x) = (1 - cos x)/(1 + cos x)

f'(x) = [(1 + cos x) d/dx (1 - cos x) - (1 - cos x) d/dx (1 + cos x)]/(1 + cos x)2

f'(x) = [(1 + cos x) {d/dx (1) - d/dx (cos x)} - (1 - cos x) {d/dx (1) + d/dx (cos x)}]/(1 + cos x)2

f'(x) = [(1 + cos x) {0 + sin x} - (1 - cos x) {0 - sin x}]/(1 + cos x)2

f'(x) = [(1 + cos x)(sin x) + (1 - cos x)(sin x)]/(1 + cos x)2

f'(x) = [sin x + sinx cos x + sin x - sin x cos x]/(1 + cos x)2

f'(x) = (2 sin x)/(1 + cos x)2

f'(x) = (2 sin x)/(1 + 1/sec x)2

f'(x) = (2 sin x)/[(sec x + 1)2/sec2x]

f'(x) = (2 sin x sec2 x)/(sec x + 1)2

f'(x) = (2 tan x secx)/(sec x + 1)2

19. sinn x

解决方案

令 y = sinn x

当 n = 1 时,y = sin x

dy/dx = d/dx (sin x) = cos x

当 n = 2 时,y = sin2 x

dy/dx = d/dx (sin x sin x)

dy/dx = sin x d/dx (sin x) + sin x d/dx (sin x)

dy/dx = sin x (cos x) + sin x (cos x)

dy/dx = 2 sin x cos x

当 n = 3 时,y = sin3 x

dy/dx = d/dx (sin2 x sin x)

dy/dx = sin2 x d/dx (sin x) + sin x d/dx (sin2 x)

dy/dx = sin2 x (cos x) + sin x d/dx (sin x sin x)

dy/dx = sin2 x cos x + sin x (2 sin x cos x)

dy/dx = sin2 x cos x + 2 sin2 x cos x

dy/dx = 3 sin2 x cos x

因此,我们可以得出结论

d/dx (sinn x) = n sinn - 1 x cos x

假设这对于 n = k 成立

d/dx (sink x) = k sink - 1 x cos x … (I)

现在,对于 n = k + 1

d/dx (sink + 1 x) = d/dx (sink x sin x)

d/dx (sink + 1 x) = sink x d/dx (sin x) + sin x d/dx (sink x)

使用方程 (I),我们得到

d/dx (sink + 1 x) = sink x (cos x) + sin x (k sink - 1 x cos x)

d/dx (sink + 1 x) = sink x cos x + k sink x cos x

d/dx (sink + 1 x) = (k + 1) sink x cos x

因此,对于 n = k + 1 也成立。

故,

d/dx (sinn x) = n sinn - 1 x cos x

20. (a + b sin x)/(c + d cos x)

解决方案

令 (a + b sin x)/(c + d cos x) = f(x)

f'(x) = [(c + d cos x) d/dx (a + b sin x) - (a + b sin x) d/dx (c + d cos x)]/(c + d cos x)2

f'(x) = [(c + d cos x) {d/dx (a) + b d/dx (sin x)} - (a + b sin x) {d/dx (c) + d d/dx (cos x)}]
/(c + d cos x)2

f'(x) = [(c + d cos x) {0 + b(cos x)} - (a + b sin x) {0 + d(-sin x)}]/(c + d cos x)2

f'(x) = [(c + d cos x) b cos x + (a + b sin x) d sin x]/(c + d cos x)2

f'(x) = [bc cos x + bd cos2 x + ad sin x + bd sin2 x]/(c + d cos x)2

f'(x) = [bc cos x + ad sin x + bd(cos2 x + sin2 x)]/(c + d cos x)2

f'(x) = [bc cos x + ad sin x + bd(1)]/(c + d cos x)2

f'(x) = (bc cos x + ad sin x + bd)/(c + d cos x)2

21. sin (x + a)/cos x

解决方案

令 sin (x + a)/cos x = f(x)

f'(x) = [cos x d/dx (sin (x + a)) - sin (x + a) d/dx (cos x)]/cos2 x

f'(x) = [cos x d/dx (sin (x + a)) - sin (x + a) d/dx (cos x)]/cos2 x

令 sin (x + a) = g(x)

根据第一原理

g'(x) = limh → 0 (g(x + h) - g(x))/h

g'(x) = limh → 0 (sin (x + h + a) - sin (x + a))/h

g'(x) = limh → 0 [2 cos ((x + h + a + x + a)/2) sin ((x + h + a - x - a)/2)]/h

g'(x) = limh → 0 [2 cos ((2x + h + 2a)/2) sin (h/2)]/h

g(x) = limh → 0 cos ((2x + h + 2a)/2) × limh/2 → 0 [sin (h/2)]/(h/2)

g'(x) = limh → 0 cos ((2x + h + 2a)/2) × 1

g'(x) = cos ((2x + 0 + 2a)/2)

g'(x) = cos (2(x + a)/2)

g'(x) = cos (x + a)

因此,

f'(x) = [cos x (cos (x + a)) - sin (x + a) (-sin x)]/cos2 x

f'(x) = [cos x cos (x + a) + sin (x + a) sin x]/cos2 x

f'(x) = [cos (x + a - x)]/cos2 x

f'(x) = cos a/cos2 x

22. x4(5 sin x - 3 cos x)

解决方案

令 x4(5 sin x - 3 cos x) = f(x)

f'(x) = x4 d/dx (5 sin x - 3 cos x) + (5 sin x - 3 cos x) d/dx (x4)

f'(x) = x4 (5 d/dx (sin x) - 3 d/dx (cos x)) + (5 sin x - 3 cos x) (4x3)

f'(x) = x4 (5 cos x + 3 sin x) + 20x3 sin x - 12x3 cos x

f'(x) = 5x4 cos x + 3x4 sin x + 20x3 sin x - 12x3 cos x

f'(x) = x3(5x cos x + 3x sin x + 20 sin x - 12 cos x)

23. (x2 + 1) cos x

解决方案

令 (x2 + 1) cos x = f(x)

f'(x) = (x2 + 1) d/dx (cos x) + cos x d/dx (x2 + 1)

f'(x) = (x2 + 1)(-sin x) + cos x (2x + 0)

f'(x) = -x2 sin x - sin x + 2x cos x

24. (ax2 + sin x)(p + q cos x)

解决方案

令 (ax2 + sin x)(p + q cos x) = f(x)

f'(x) = (ax2 + sin x) d/dx (p + q cos x) + (p + q cos x) d/dx (ax2 + sin x)

f'(x) = (ax2 + sin x)(0 - q sin x) + (p + q cos x)(a d/dx (x2) + cos x)

f'(x) = -aqx2 sin x - sin2 x + (p + q cos x)(2ax + cos x)

25. (x + cos x)(x - tan x)

解决方案

令 (x + cos x)(x - tan x) = f(x)

f'(x) = (x + cos x) d/dx (x - tan x) + (x - tan x) d/dx (x + cos x)

f'(x) = (x + cos x)(1 - d/dx (tan x)) + (x - tan x)(1 + d/dx (cos x))

令 tan x = g(x)

根据第一原理

g'(x) = limh → 0 (g(x + h) - g(x))/h

g'(x) = limh → 0 (tan (x + h) - tan x)/h

g'(x) = limh → 0 (sin (x + h)/cos (x + h) - sin x/cos x)/h

g'(x) = limh → 0 (cos x sin (x + h) - cos (x + h) sin x)/h cos x cos (x + h)

乘以并除以 2

g'(x) = limh → 0 (2 cos x sin (x + h) - 2 cos (x + h) sin x)/2h cos x cos (x + h)

g'(x) = limh → 0 (sin (x + h + x) - sin(x - x - h) - sin(x + h + x) + sin (x + h - x))/2h cos x cos (x + h)

g'(x) = limh → 0 (sin (2x + h) - sin(-h) - sin (2x + h) + sin h)/2h cos x cos (x + h)

g'(x) = limh → 0 (sin h + sin h)/2h cos x cos (x + h)

g'(x) = limh → 0 (2 sin h)/2h cos x cos (x + h)

g'(x) = limh → 0 (sin h)/h cos x cos (x + h)

g'(x) = limh → 0 (sin h)/h × limh → 0 1/cos x cos (x + h)

g'(x) = 1 × limh → 0 1/cos x cos (x + h)

g'(x) = 1/cos x cos (x + 0)

g'(x) = 1/cos x cos x

g'(x) = sec2x

因此,

f'(x) = (x + cos x) (1 - sec2 x) + (x - tan x)(1 - sin x)

f'(x) = (x + cos x)(-tan2 x) + (x - tan x)(1 - sin x)

26. (4x + 5 sin x)/(3x + 7 cos x)

解决方案

令 (4x + 5 sin x)/(3x + 7 cos x) = f(x)

f'(x) = [(3x + 7 cos x) d/dx (4x + 5 sin x) - (4x + 5 sin x) d/dx (3x + 7 cos x)]/(3x + 7 cos x)2

f'(x) = [(3x + 7 cos x) (4 + 5(cos x)) - (4x + 5 sin x) (3 + 7(-sin x))]/(3x + 7 cos x)2

f'(x) = [(3x + 7 cos x)(4 + 5 cos x) - (4x + 5 sin x)(3 - 7 sin x)]/(3x + 7 cos x)2

f'(x) = [12x + 28 cos x + 15x cos x + 35 cos2 x - 12x + 28x sin x - 15 sin x + 35 sin2 x]/(3x + 7 cos x)2

f'(x) = [28 cos x + 15x cos x + 35 (cos2x + sin2 x) + 28x sin x - 15 sin x]/(3x + 7 cos x)2

f'(x) = [35 + 28 cos x + 15x cos x + 28x sin x - 15 sin x]/(3x + 7 cos x)2

27. (x2 cos π/4)/sin x

解决方案

令 (x2 cos π/4)/sin x = f(x)

f'(x) = cos π/4 × [sin x d/dx (x2) - x2 d/dx (sin x)]/sin2 x

f'(x) = cos π/4 × [2x sin x - x2 cos x]/sin2 x

f'(x) = x cos π/4 × [2 sin x - x cos x]/sin2 x

28. x/(1 + tan x)

解决方案

令 x/(1 + tan x) = f(x)

f'(x) = [(1 + tan x) d/dx (x) - x d/dx (1 + tan x)]/(1 + tan x)2

f'(x) = [(1 + tan x)(1) - x (0 + d/dx (tan x))]/(1 + tan x)2

令 tan x = g(x)

根据第一原理

g'(x) = limh → 0 (g(x + h) - g(x))/h

g'(x) = limh → 0 (tan (x + h) - tan x)/h

g'(x) = limh → 0 (sin (x + h)/cos (x + h) - sin x/cos x)/h

g'(x) = limh → 0 (cos x sin (x + h) - cos (x + h) sin x)/h cos x cos (x + h)

乘以并除以 2

g'(x) = limh → 0 (2 cos x sin (x + h) - 2 cos (x + h) sin x)/2h cos x cos (x + h)

g'(x) = limh → 0 (sin (x + h + x) - sin(x - x - h) - sin(x + h + x) + sin (x + h - x))/2h cos x cos (x + h)

g'(x) = limh → 0 (sin (2x + h) - sin(-h) - sin (2x + h) + sin h)/2h cos x cos (x + h)

g'(x) = limh → 0 (sin h + sin h)/2h cos x cos (x + h)

g'(x) = limh → 0 (2 sin h)/2h cos x cos (x + h)

g'(x) = limh → 0 (sin h)/h cos x cos (x + h)

g'(x) = limh → 0 (sin h)/h × limh → 0 1/cos x cos (x + h)

g'(x) = 1 × limh → 0 1/cos x cos (x + h)

g'(x) = 1/cos x cos (x + 0)

g'(x) = 1/cos x cos x

g'(x) = sec2x

因此,

f'(x) = [1 + tan x - x sec2 x]/(1 + tan x)2

29. (x + sec x) (x - tan x)

解决方案

令 (x + sec x)(x - tan x) = f(x)

f'(x) = (x + sec x) d/dx (x - tan x) + (x - tan x) d/dx (x + sec x)

f'(x) = (x + sec x)(1 - d/dx (tan x)) + (x - tan x)(1 + d/dx (sec x))

设 tan x = f1(x)

根据第一原理

f1'(x) = limh → 0 (f1(x + h) - f1(x))/h

f1'(x) = limh → 0 (tan (x + h) - tan x)/h

f1'(x) = limh → 0 (sin (x + h)/cos (x + h) - sin x/cos x)/h

f1'(x) = limh → 0 (cos x sin (x + h) - cos (x + h) sin x)/h cos x cos (x + h)

乘以并除以 2

f1'(x) = limh → 0 (2 cos x sin (x + h) - 2 cos (x + h) sin x)/2h cos x cos (x + h)

f1'(x) = limh → 0 (sin (x + h + x) - sin (x - x - h) - sin (x + h + x) + sin (x + h - x))/2h cos x cos (x + h)

f1'(x) = limh → 0 (sin (2x + h) - sin (-h) - sin (2x + h) + sin h)/2h cos x cos (x + h)

f1'(x) = limh → 0 (sin h + sin h)/2h cos x cos (x + h)

f1'(x) = limh → 0 (2 sin h)/2h cos x cos (x + h)

f1'(x) = limh → 0 (sin h)/h cos x cos (x + h)

f1'(x) = limh → 0 (sin h)/h × limh → 0 1/cos x cos(x + h)

f1'(x) = 1 × limh → 0 1/cos x cos (x + h)

f1'(x) = 1/cos x cos (x + 0)

f1'(x) = 1/cos x cos x

f1'(x) = sec2 x

设 sec x = f2(x)

根据第一原理

f'2(x) = limh → 0 (f(x + h) - f(x))/h

f'2(x) = limh → 0 (sec (x + h) - sec x)/h

f'2(x) = limh → 0 (1/cos (x + h) - 1/cos x)/h

f'2(x) = limh → 0 (cos x - cos (x + h))/h cos x cos (x + h)

f'2(x) = limh → 0 [-2 sin ((x + x + h)/2) sin ((x - x - h)/2)]/h cos x cos (x + h)

f'2(x) = limh → 0 [-2 sin ((2x + h)/2) sin (-h/2)]/h cos x cos (x + h)

f'2(x) = limh → 0 [2 sin ((2x + h)/2) sin (h/2)]/h cos x cos (x + h)

f'2(x) = limh → 0 [sin ((2x + h)/2)]/cos x cos (x + h) × limh/2 → 0 [sin (h/2)]/(h/2)

f'2(x) = limh → 0 [sin ((2x + h)/2)]/cos x cos (x + h) × 1

f'2(x) = sin ((2x + 0)/2)/cos x cos (x + 0)

f'2(x) = sin (2x/2)/cos x cos x

f'2(x) = sin x/cos x × 1/cos x

f'2(x) = tan x sec x

因此,

f'(x) = (x + sec x)(1 - sec2 x) + (x - tan x)(1 + sec x tan x)

30. x/sinn x

解决方案

令 x/sinn x = f(x)

f'(x) = [sinn x d/dx (x) - x d/dx (sinn x)]/sin2n x

我们知道 d/dx (sinn x) = n sinn - 1 x cos x。因此,

f'(x) = [sinn x (1) - x (n sinn - 1 x cos x)]/sin2n x

f'(x) = [sinn x - nx sinn - 1 x cos x]/sin2n x

f'(x) = sinn -1 x (sin x - nx cos x)/sin2n x

f'(x) = (sin x - nx cos x)/sinn + 1 x