12 年级数学第 4 章:行列式 的 NCERT 解决方案2024年10月1日 | 阅读32分钟 练习 4.1计算练习题 1 和 2 中的行列式 ![]() 沿 R1 展开 = 2 × (-1) - 4 × (-5) = -2 + 20 = 18 3. 如果 A = 解决方案 ![]() 4. 如果 A = 解决方案 ![]() = 3 × (3 × 12 - 6 × 0) - 0 × (0 × 12 - 6 × 0) + 3 × (0 × 0 - 6 × 0) = 3 × (36 - 0) - 0 + 3 × 0 = 3 × 36 - 0 = 108 现在,右侧 = 27|A| 沿 R1 展开 右侧 = 27|A| = 27 = 27 [1 × (1 × 4 - 2 × 0) - 0 × (0 × 4 - 2 × 0) + 1 × (0 × 0 - 2 × 0) = 27 [(4 - 0) - 0 + 1 × 0] = 27 [4 - 0 + 0] = 27 × 4 = 108 LHS = RHS 因此,证明完毕。 5. 计算行列式 ![]() 解决方案 ![]() 沿 R1 展开 = 3 × (0 × 0 - (-1) × (-5)) - (-1) × (0 × 0 - (-1) × 3) - 2 × (0 × (-5) - 0 × 3) = 3 × (0 - 5) + (0 + 3) - 2 × 0 = 3 × (-5) + 3 - 0 = -15 + 3 = -12 ![]() 沿 R1 展开 = 3 × (1 × 1 - (-2) × 3) - (-4) × (1 × 1 - (-2) × 2) + 5 × (1 × 3 - 1 × 2) = 3 × (1 + 6) + 4 × (1 + 4) + 5 × (3 - 2) = 3 × 7 + 4 × 5 + 5 × 1 = 21 + 20 + 5 = 46 ![]() 沿 R1 展开 = 0 × (0 × 0 - (-3) × 3) - 1 × ((-1) × 0 - (-3) × (-2)) + 2 × ((-1) × 3 - 0 × (-3)) = 0 - (0 - 6) + 2 × (-3 - 0) = 6 - 6 = 0 ![]() 沿 R1 展开 = 2 × (2 × 0 - (-1) × (-5)) - (-1) × (0 × 0 - (-1) × 3) - 2 × (0 × (-5) - 2 × 3) = 2 × (0 - 5) + (0 + 3) - 2 × (0 - 6) = -10 + 3 + 12 = 5 沿 R1 展开 |A| = 1 × (1 × (-9) - (-3) × 4) - 1 × (2 × (-9) - (-3) × 5) - 2 × (2 × 4 - 1 × 5) = (-9 + 12) - (-18 + 15) - 2 × (8 - 5) = (3) - (-3) - 2 × 3 = 3 + 3 - 6 = 0 7. 求 x 的值,如果 ![]() 2 × 1 - 4 × 5 = 2x × x - 4 × 6 2 - 20 = 2x2 - 24 -18 = 2(x2 - 12) -9 = x2 - 12 x2 - 3 = 0 x2 = 3 x = ± √3 ![]() 2 × 5 - 3 × 4 = x × 5 - 3 × 2x 10 - 12 = 5x - 6x -2 = -x x = 2 x × x - 2 × 18 = 6 × 6 - 2 × 18 x2 - 36 = 36 - 36 x2 - 36 = 0 x2 = 36 x = ±6 因此,(B) 是正确答案。 练习 4.21. 计算以下每组顶点处三角形的面积 (i) (1, 0), (6, 0), (4, 3) (ii) (2, 7), (1, 1), (10, 8) (iii) (-2, -3), (3, 2), (-1, -8) 解决方案 我们知道,顶点为 (x1, y1), (x2, y2), (x3, y3) 的三角形的面积由下式给出 ![]() (i) 三角形的顶点为 (1, 0), (6, 0), (4, 3)。因此, ![]() = 1/2 × [1 × (0 × 1 - 1 × 3) - 0 × (6 × 1 - 1 × 4) + 1 × (6 × 3 - 0 × 4)] = 1/2 × [(0 - 3) - 0 + (18 - 0)] = 1/2 × (18 - 3) = 1/2 × 15 = 7.5 平方单位 (ii) 三角形的顶点为 (2, 7), (1, 1), (10, 8)。因此, ![]() = 1/2 × [2 × (1 × 1 - 1 × 8) - 7 × (1 × 1 - 1 × 10) + 1 × (1 × 8 - 1 × 10)] = 1/2 × [2 × (1 - 8) - 7 × (1 - 10) + (8 - 10)] = 1/2 × [2 × (-7) - 7 × (-9) - 2] = 1/2 × [-14 + 63 - 2] = 1/2 × [47] = 23.5 平方单位 (iii) 三角形的顶点为 (-2, -3), (3, 2), (-1, -8)。因此, ![]() = 1/2 × [-2 × (2 × 1 - 1 × (-8)) - (-3) × (3 × 1 - 1 × (-1)) + 1 × (3 × (-8) - 2 × (-1))] = 1/2 × [-2 × (2 + 8) + 3 × (3 + 1) + (-24 + 2)] = 1/2 × [-2 × (10) + 3 × 4 - 22] = 1/2 × (-20 + 12 - 22) = 1/2 × (-30) = |-15| = 15 平方单位 2. 表明点 A (a, b + c), B (b, c + a), C (c, a + b) 共线 解决方案 我们知道,由三个共线点形成的三角形的面积总是零。因此, ![]() = 1/2 × [a × {(c + a) - (a + b)} - (b + c) × (b - c) + 1 × {b(a + b) - (c + a)c}] = 1/2 × [a × {c + a - a - b} - (b2 - c2) + {ab + b2 - c2 - ac}] = 1/2 × [a(c - b) - b2 + c2 + b2 - c2 + ab - ac] = 1/2 × [ac - ab + ab - ac] = 1/2 × 0 = 0 平方单位 因此,点 A (a, b + c), B (b, c + a), C (c, a + b) 共线。 3. 求 k 的值,如果三角形面积为 4 平方单位且顶点为 (i) (k, 0), (4, 0), (0, 2) (ii) (-2, 0), (0, 4), (0, k) 解决方案 我们知道,顶点为 (x1, y1), (x2, y2), (x3, y3) 的三角形的面积由下式给出 ![]() 4 = 1/2 × |k (0 × 1 - 1 × 2) - 0 (4 × 1 - 1 × 0) + 1 (4 × 2 - 0 × 0)| 8 = |k (0 - 2) - 0 + (8 - 0)| 8 = |-2k + 8| 8 - 2k = ± 8 8 - 2k = 8 ⇒ 2k = 0 ⇒ k = 0 或 8 - 2k = -8 ⇒ 2k = 16 ⇒ k = 8 因此,k 为 0 或 8。 (ii) 三角形的顶点为 (-2, 0), (0, 4), (0, k)。因此, ![]() 4 = 1/2 × |-2 (4 × 1 - 1 × k) - 0 (0 × 1 - 1 × 0) + 1 (0 × k - 4 × 0)| 8 = |-2 (4 - k) - 0 + (0 - 0)| 8 = |-8 + 2k| 2k - 8 = ± 8 2k - 8 = 8 ⇒ 2k = 16 ⇒ k = 8 或 2k - 8 = -8 ⇒ 2k = 0 ⇒ k = 0 因此,k 为 8 或 0。 4. (i) 使用行列式求连接 (1, 2) 和 (3, 6) 的直线方程。 (ii) 使用行列式求连接 (3, 1) 和 (9, 3) 的直线方程。 解决方案 (i) 设 C (x, y) 为连接点 A (1, 2) 和 B (3, 6) 的直线上的点。 现在,点 A、B 和 C 共线。 我们知道,由三个共线点形成的三角形的面积总是零。因此, 三角形 ABC 的面积 = 0 ![]() 1 (6 × 1 - 1 × y) - 2 (3 × 1 - 1 × x) + 1 (3 × y - 6 × x) = 0 6 - y - 2 (3 - x) + 3y - 6x = 0 2y - 6x + 6 - 6 + 2x = 0 2y - 4x = 0 2(y - 2x) = 0 y - 2x = 0 2x = y 因此,连接点 (1, 2) 和 (3, 6) 的直线方程为 2x = y。 (ii) 设 C (x, y) 为连接点 A (1, 2) 和 B (3, 6) 的直线上的点。 现在,点 A、B 和 C 共线。 我们知道,由三个共线点形成的三角形的面积总是零。因此, 三角形 ABC 的面积 = 0 ![]() 3 (3 × 1 - 1 × y) - 1 (9 × 1 - 1 × x) + 1 (9 × y - 3 × x) = 0 3 (3 - y) - (9 - x) + (9y - 3x) = 0 9 - 3y - 9 + x + 9y - 3x = 0 6y - 2x = 0 2(3y - x) = 0 3y - x = 0 x = 3y 因此,连接点 (3, 1) 和 (9, 3) 的直线方程为 x = 3y。 5. 如果三角形面积为 35 平方单位,顶点为 (2, - 6), (5, 4) 和 (k, 4)。则 k 为 (A) 12 (B) -2 (C) -12, -2 (D) 12, -2 解决方案 我们知道,顶点为 (x1, y1), (x2, y2), (x3, y3) 的三角形的面积由下式给出 ![]() 35 = 1/2 × |2 (4 × 1 - 1 × 4) - (-6) (5 × 1 - 1 × k) + 1 (5 × 4 - 4 × k)| 70 = |2 (4 - 4) + 6 (5 - k) + (20 - 4k)| 70 = |2 (0) + 30 - 6k + 20 - 4k| 70 = |50 - 10k| 70 = 10 |5 - k| 7 = |5 - k| 5 - k = +-7 5 - k = 7 ⇒ k = -2 或 5 - k = -7 ⇒ k = 12 因此,(D) 是正确答案。 练习 4.3写出以下行列式元素的余子式和代数余子式 ![]() 解决方案 元素 aij 的余子式为 Mij,其代数余子式为 Aij = (-1)i + j Mij (i) a11 的余子式为 M11 = 3,a11 的代数余子式为 A11 = (-1)1 + 1 (3) = (-1)2 3 = 3 a12 的余子式为 M12 = 0,a12 的代数余子式为 A12 = (-1)1 + 2 (0) = 0 a21 的余子式为 M21 = -4,a21 的代数余子式为 A21 = (-1)2 + 1 (-4) = (-1)3 (-4) = 12 a22 的余子式为 M22 = 2,a22 的代数余子式为 A22 = (-1)2 + 2 (2) = (-1)4 (2) = 2 (ii) a11 的余子式为 M11 = d,a11 的代数余子式为 A11 = (-1)1 + 1 (d) = (-1)2 (d) = d a12 的余子式为 M12 = b,a12 的代数余子式为 A12 = (-1)1 + 2 (b) = (-1)3 (b) = -b a21 的余子式为 M21 = c,a21 的代数余子式为 A21 = (-1)2 + 1 (c) = (-1)3 (c) = -c a22 的余子式为 M22 = a,a22 的代数余子式为 A22 = (-1)2 + 2 (a) = (-1)4 (a) = a ![]() 解决方案 ![]() 元素 aij 的代数余子式由 Aij = (-1)i + j Mij 给出。因此, A11 = (-1)1 + 1 (1) = (-1)2 = 1 A12 = (-1)1 + 2 (0) = 0 A13 = (-1)1 + 3 (0) = 0 A21 = (-1)2 + 1 (0) = 0 A22 = (-1)2 + 2 (1) = (-1)4 = 1 A23 = (-1)2 + 3 (0) = 0 A31 = (-1)3 + 1 (0) = 0 A32 = (-1)3 + 2 (0) = 0 A33 = (-1)3 + 3 (1) = (-1)6 = 1 ![]() 元素 aij 的代数余子式由 Aij = (-1)i + j Mij 给出。因此, A11 = (-1)1 + 1 (11) = (-1)2 (11) = 11 A12 = (-1)1 + 2 (6) = (-1)3 (6) = -6 A13 = (-1)1 + 3 (3) = (-1)4 (3) = 3 A21 = (-1)2 + 1 (-4) = (-1)3 (-4) = 4 A22 = (-1)2 + 2 (2) = (-1)4 (2) = 2 A23 = (-1)2 + 3 (1) = (-1)5 = -1 A31 = (-1)3 + 1 (-20) = (-1)4 (-20) = -20 A32 = (-1)3 + 2 (-13) = (-1)5 (-13) = 13 A33 = (-1)3 + 3 (5) = (-1)6 (5) = 5 ![]() a21, a22 和 a23 的代数余子式为 A21 = (-1)2 + 1 (M21) = (-1)3 (-7) = 7 A22 = (-1)2 + 2 (M22) = (-1)4 (7) = 7 A23 = (-1)2 + 3 (M23) = (-1)5 (7) = -7 因此, ![]() = 2 (7) + 0 (7) + 1 (-7) = 14 + 0 - 7 = 7 ![]() a13, a23 和 a33 的代数余子式为 A13 = (-1)3 + 1 (M13) = (-1)4 (z - y) = z - y A23 = (-1)3 + 2 (M23) = (-1)5 (z - x) = -(z - x) = x - z A33 = (-1)3 + 3 (M33) = (-1)6 (y - x) = y - x 因此, ![]() = yz (z - y) + zx (x - z) + xy (y - x) = yz2 - y2z + x2z - xz2 + xy2 - x2y = x2z - x2y - xz2 + xy2 + yz2 - y2z = x2 (z - y) - x (z2 - y2) + yz (z - y) = x2 (z - y) - x (z + y) (z - y) + yz (z - y) = (z - y) [x2 - x (z + y) + yz] = (z - x) [x2 - xz - xy + yz] = (z - x) [x (x - z) - y (x - z)] = (z - x) (x - z) (x - y) = (x - y) (y - z) (z - x) ![]() 练习题 4求练习题 1 和 2 中各矩阵的伴随矩阵。 ![]() A11 = (-1)1 + 1 (4) = (-1)2 (4) = 4 A12 = (-1)1 + 2 (3) = (-1)3 (3) = -3 A21 = (-1)2 + 1 (2) = (-1)3 (2) = -2 A22 = (-1)2 + 2 (1) = (-1)4 = 1 ![]() ![]() 解决方案 ![]() 验证 A (adj A) = (adj A) A = |A| I 在练习题 3 和 4 中 ![]() A11 = (-1)1 + 1 (-6) = (-1)2 (-6) = -6 A12 = (-1)1 + 2 (-4) = (-1)3 (-4) = 4 A21 = (-1)2 + 1 (3) = (-1)3 (3) = 3 A22 = (-1)2 + 2 (2) = (-1)4 (2) = 2 ![]() ![]() ![]() 解决方案 ![]() 现在,A (adj A) ![]() ![]() ![]() 求练习题 5 至 11 中各矩阵的逆矩阵(如果存在)。 ![]() A11 = (-1)1 + 1 (3) = (-1)2 (3) = 3 A12 = (-1)1 + 2 (4) = (-1)3 (4) = -4 A21 = (-1)2 + 1 (-2) = (-1)3 (-2) = 2 A22 = (-1)2 + 2 (2) = (-1)4 (2) = 2 |A| = 由于 |A| ≠ 0。因此,A-1 存在。 ![]() A11 = (-1)1 + 1 (2) = (-1)2 (2) = 2 A12 = (-1)1 + 2 (-3) = (-1)3 (-3) = 3 A21 = (-1)2 + 1 (5) = (-1)3 (5) = -5 A22 = (-1)2 + 2 (-1) = (-1)4 (-1) = -1 |A| = 由于 |A| ≠ 0。因此,A-1 存在。 ![]() ![]() 解决方案 ![]() |A| = 1 {2 (5) - 4 (0)} - 2 {0 (5) - 4 (0)} + 3 {0 (0) - 2 (0)} |A| = (10 - 0) - 2 (0 - 0) + 3 (0 - 0) |A| = 10 - 0 + 0 |A| = 10 由于 |A| ≠ 0。因此,A-1 存在。 ![]() ![]() 解决方案 ![]() |A| = 1 {3 (-1) - 0 (2)} - 0 {3 (-1) - 0 (5)} + 0 {3 (2) - 3 (5)} |A| = -3 - 0 + 0 |A| = -3 由于 |A| ≠ 0。因此,A-1 存在。 ![]() ![]() 解决方案 ![]() |A| = 2 {(-1) (1) - 0 (2)} - 1 {4 (1) - 0 (-7)} + 3 {4 (2) - (-1) (-7)} |A| = 2 (-1) - (4) + 3 {8 - 7} |A| = -2 - 4 + 3(1) |A| = -3 由于 |A| ≠ 0。因此,A-1 存在。 ![]() ![]() 解决方案 ![]() |A| = 1 {(2) (4) - (-3) (-2)} - (-1) {0 (4) - (-3) (3)} + 2 {0 (-2) - 2 (3)} |A| = (8 - 6) + (0 + 9) + 2 (0 - 6) |A| = 2 + 9 + 2 (-6) |A| = 1 - 12 |A| = -1 由于 |A| ≠ 0。因此,A-1 存在。 ![]() ![]() 解决方案 ![]() |A| = 1 {(cos α) (-cos α) - (sin α) (sin α)} - 0 {0 (-cos α) - sin α (0)} + 0 {0 (sin α) - 0 (cos α)} |A| = (-cos2 α - sin2 α) - 0 + 0 |A| = -(cos2 α + sin2 α) |A| = -1 由于 |A| ≠ 0。因此,A-1 存在。 ![]() ![]() A11 = (-1)1 + 1 (5) = (-1)2 (5) = 5 A12 = (-1)1 + 2 (2) = (-1)3 (2) = -2 A21 = (-1)2 + 1 (7) = (-1)3 (7) = -7 A22 = (-1)2 + 2 (3) = (-1)4 (3) = 3 ![]() B11 = (-1)1 + 1 (9) = (-1)2 (9) = 9 B12 = (-1)1 + 2 (7) = (-1)3 (7) = 7 B21 = (-1)2 + 1 (8) = (-1)3 (8) = -8 B22 = (-1)2 + 2 (6) = (-1)4 (6) = 6 ![]() 现在, ![]() AB11 = (-1)1 + 1 (61) = (-1)2 (61) = 61 AB12 = (-1)1 + 2 (47) = (-1)3 (47) = -47 AB21 = (-1)2 + 1 (87) = (-1)3 (87) = -87 AB22 = (-1)2 + 2 (67) = (-1)4 (67) = 67 ![]() ![]() 13. 如果 A = 解决方案 ![]() 现在,左侧 = A2 - 5A + 7I ![]() 因此,证明 A2 - 5A + 7I = O。 A2 - 5A + 7I = O A2 - 5A = -7I 两边乘以 A-1 A2 A-1 - 5A A-1 = -7I A-1 A A A-1 - 5I = -7A-1 AI - 5I = -7A-1 A - 5I = -7A-1 ![]() 14. 对于矩阵 A = 解决方案 ![]() 现在, A2 + aA + bI = O ![]() 所以, 4 + a = 0 a = -4 3 + a + b = 0 3 + (-4) + b = 0 3 - 4 + b = 0 -1 + b = 0 b = 1 因此,a = -4 且 b = 1。 15. 对于矩阵 A = 解决方案 ![]() ![]() 现在,左侧 = A3 - 6A2 + 5A + 11I ![]() 因此,证明 A3 - 6A2 + 5A + 11I = O A3 - 6A2 + 5A + 11I = O A3 - 6A2 + 5A = -11I 两边乘以 A-1 A3A-1 - 6A2 A-1 + 5A A-1 = -11I A-1 A2 AA-1 - 6A AA-1 + 5I = -11A-1 A2I - 6AI + 5I = -11A-1 A2 - 6A + 5I = -11A-1 ![]() 15. 如果 A = 解决方案 ![]() ![]() ![]() 因此,证明 A3 - 6A2 + 9A - 4I = O A3 - 6A2 + 9A = 4I 两边乘以 A-1 A3 A-1 - 6A2 A-1 + 9A A-1 = 4I A-1 A2 AA-1 - 6A AA-1 + 9I = 4A-1 A2 - 6A + 9I = 4A-1 ![]() 17. 设 A 为 3 × 3 阶的非奇异方阵。则 |adj A| 等于 (A) |A| (B) |A|2 (C) |A|3 (D) 3|A| 解决方案 我们知道 (adj A) A = |A|I ![]() |(adj A) A| = [|A| (|A| (|A|) + 0 (0)) + 0 (0 (|A|) + 0 (0)) + 0 (0 (0) + |A| (0))] |(adj A) A| = [|A| (|A|2 + 0) + 0 (0 + 0) + 0 (0 + 0)] |(adj A) A| = |A|3 |(adj A)| = |A|2 因此,(B) 是正确答案。 18. 如果 A 是一个 2 阶的可逆矩阵,则 det (A-1) 等于 (A) det (A) (B) 1/det(A) (C) 1 (D) 0 解决方案 我们知道矩阵 A 是可逆的。因此, A-1 = 1/|A| × adj A ![]() ![]() det (A-1) = d/(ad - bc) × a/(ad - bc) - (-b)/(ad - bc) × (-c)/(ad - bc) det (A-1) = ad/(ad - bc)2 - bc/(ad - bc)2 det (A-1) = 1/(ad - bc)2 × (ad - bc) det (A-1) = (1/det (A))2 × det (A) det (A-1) = 1/det (A) 因此,(B) 是正确答案。 练习题 4.5检查练习题 1 至 6 中方程组的一致性。 1. x + 2y = 2 解决方案 给定的方程组 x + 2y = 2 和 2x + 3y = 3 (1)x + 2y = 2 和 2x + 3y = 3 此方程组可以重写为 AX = B 的形式,其中 ![]() = 1 (3) - 2 (2) = 3 - 4 = -1 |A| ≠ 0。所以,A-1 存在。 因此,给定的方程组是一致的。 2. 2x - y = 5 解决方案 给定的方程组 2x - y = 5 和 x + y = 4 2x - (1)y = 5 和 (1)x + (1)y = 4 此方程组可以重写为 AX = B 的形式,其中 ![]() = 2 (1) - 1 (1) = 2 - 1 = 1 |A| ≠ 0。所以,A-1 存在。 因此,给定的方程组是一致的。 3. x + 3y = 5 解决方案 给定的方程组 x + 3y = 5 和 2x + 6y = 8 (1)x + 3y = 5 和 2x + 6y = 8 此方程组可以重写为 AX = B 的形式,其中 ![]() (adj A) B ≠ O 给定方程组无解。 因此,给定的方程组不一致。 4. x + y + z = 1 解决方案 给定的方程组 x + y + z = 1, 2x + 3y + 2z = 2, 和 ax + ay + 2az = 4 此方程组可以重写为 AX = B 的形式,其中 ![]() = 1 {3 (2a) - 2 (a)} - 1 {2 (2a) - 2 (a)} + 1 {2 (a) - 3 (a)} = {6a - 2a} - {4a - 2a} + {2a - 3a} = 4a - 2a - a = a |A| ≠ 0。所以,A-1 存在。 因此,给定的方程组是一致的。 5. 3x - y - 2z = 2 解决方案 给定的方程组 3x - y - 2z = 2, 2y - z = -1, 和 3x - 5y = 3 3x - y - 2z = 2, 0x + 2y - z = -1, 和 3x - 5y + 0z = 3 此方程组可以重写为 AX = B 的形式,其中 ![]() = 3 {2 (0) - (-1) (-5)} - (-1) {0 (0) - (-1) (3)} - 2 {0 (-5) - 2 (3)} = 3 {0 - 5} + {3} - 2 {-6} = -15 + 3 + 12 = 0 |A| = 0。所以,A-1 不存在。 A11 = [2 (0) - (-1)(-5)] = -5 A12 = -[0 (0) - (-1) (3)] = -3 A13 = [0 (-5) - 2 (3)] = -6 A21 = -[-1 (0) - (-2) (-5)] = -(-10) = 10 A22 = [3 (0) - (-2) (3)] = 6 A23 = -[3 (-5) - (-1) (3)] = -[-15 + 3] = 12 A31 = [(-1) (-1) - (-2) (2)] = [1 + 4] = 5 A32 = -[3 (-1) - (-2) (0)] = 3 A33 = [3 (2) - (-1) (0)] = 6 ![]() (adj A) B ≠ O 给定方程组无解。 因此,给定的方程组不一致。 6. 5x - y + 4z = 5 解决方案 给定的方程组 5x - y + 4z = 5, 2x + 3y + 5z = 2, 和 5x - 2y + 6z = -1 此方程组可以重写为 AX = B 的形式,其中 ![]() = 5 {3 (6) - (5) (-2)} - (-1) {2 (6) - (5) (5)} + 4 {2 (-2) - 3 (5)} = 5 {18 + 10} + {12 - 25} + 4 {-4 - 15} = 5 (28) - 13 + 4 (-19) = 140 - 13 - 76 = 51 |A| ≠ 0。所以,A-1 存在。 因此,给定的方程组是一致的。 使用矩阵方法求解练习题 7 至 14 中的线性方程组。 7. 5x + 2y = 4 解决方案 给定的方程组 5x + 2y = 4 和 7x + 3y = 5 此方程组可以重写为 AX = B 的形式,其中 ![]() 现在,AX = B X = A-1 B ![]() x = 2 且 y = -3 是给定方程组的解。 8. 2x - y = -2 解决方案 给定的方程组 2x - y = -2 和 3x + 4y = 3 此方程组可以重写为 AX = B 的形式,其中 ![]() 现在,AX = B X = A-1 B ![]() x = -5/11 且 y = 12/11 是给定方程组的解。 9. 4x - 3y = 3 解决方案 给定的方程组 4x - 3y = 3 和 3x - 5y = 7 此方程组可以重写为 AX = B 的形式,其中 ![]() 现在,AX = B X = A-1 B 此方程组可以重写为 AX = B 的形式,其中 ![]() x = -6/11 且 y = -19/11 是给定方程组的解。 10. 5x + 2y = 3 解决方案 给定的方程组 5x + 2y = 3 和 3x + 2y = 5 此方程组可以重写为 AX = B 的形式,其中 ![]() 现在,AX = B X = A-1 B ![]() x = -1 且 y = 4 是给定方程组的解。 11. 2x + y + z = 1 解决方案 给定的方程组 2x + y + z = 1, x - 2y - z = 3/2 和 3y - 5z = 9 2x + y + z = 1, x - 2y - z = 3/2 和 0x + 3y - 5z = 9 此方程组可以重写为 AX = B 的形式,其中 ![]() = 2 {(-2) (-5) - (-1) (3)} - 1 {1 (-5) - (-1) (0)} + 1 {1 (3) - (-2) (0)} = 2 {10 + 3} - (-5) + (3) = 2 (13) + 5 + 3 = 26 + 8 = 34 |A| ≠ 0。所以,A-1 存在。 A11 = [(-2) (-5) - (-1) (3)] = 10 + 3 = 13 A12 = -[1 (-5) - (-1) (0)] = 5 A13 = [1 (3) - (-2) (0)] = 3 A21 = -[1 (-5) - 1 (3)] = -(-5 - 3) = 8 A22 = [2 (-5) - 1 (0)] = -10 A23 = -[2 (3) - 1 (0)] = -6 A31 = [1 (-1) - 1 (-2)] = [-1 + 2] = 1 A32 = -[2 (-1) - 1 (1)] = -(-2 - 1) = 3 A33 = [2 (-2) - 1 (1)] = -4 - 1 = -5 ![]() x = 1, y = -1/2 且 z = -3/2 是给定方程组的解。 12. x - y + z = 4 解决方案 给定的方程组 x - y + z = 4, 2x + y - 3z = 0 和 x + y + z = 2 此方程组可以重写为 AX = B 的形式,其中 ![]() = 1 {1 (1) - (-3) (1)} - (-1) {2 (1) - (-3) (1)} + 1 {2 (1) - 1 (1)} = (1 + 3) + (2 + 3) + (2 - 1) = 4 + 5 + 1 = 10 |A| ≠ 0。所以,A-1 存在。 A11 = [1 (1) - (-3) (1)] = 1 + 3 = 4 A12 = -[2 (1) - (-3) (1)] = -(2 + 3) = -5 A13 = [2 (1) - 1 (1)] = 2 - 1 = 1 A21 = -[(-1) (1) - 1 (1)] = -(-1 - 1) = 2 A22 = [1 (1) - 1 (1)] = 1 - 1 = 0 A23 = -[1 (1) - (-1) (1)] = -(1 + 1) = -2 A31 = [(-1) (-3) - 1 (1)] = 3 - 1 = 2 A32 = -[1 (-3) - 1 (2)] = -(-3 - 2) = 5 A33 = [1 (1) - (-1) (2)] = 1 + 2 = 3 ![]() x = 2, y = -1 且 z = 1 是给定方程组的解。 13. 2x + 3y + 3z = 5 解决方案 给定的方程组 2x + 3y + 3z = 5, x - 2y + z = -4 和 3x - y - 2z = 3 此方程组可以重写为 AX = B 的形式,其中 ![]() = 2 {(-2) (-2) - 1 (-1)} - 3 {1 (-2) - 1 (3)} + 3 {1 (-1) - (-2) (3)} = 2 (4 + 1) - 3 (-2 - 3) + 3 (-1 + 6) = 2 (5) - 3 (-5) + 3 (5) = 10 + 15 + 15 = 40 |A| ≠ 0。所以,A-1 存在。 A11 = [(-2) (-2) - 1 (-1)] = 4 + 1 = 5 A12 = -[1 (-2) - (1) (3)] = -(-2 - 3) = 5 A13 = [1 (-1) - (-2) (3)] = -1 + 6 = 5 A21 = -[3 (-2) - 3 (-1)] = -(-6 + 3) = 3 A22 = [2 (-2) - 3 (3)] = -4 - 9 = -13 A23 = -[2 (-1) - 3 (3)] = -(-2 - 9) = 11 A31 = [3 (1) - 3 (-2)] = 3 + 6 = 9 A32 = -[2 (1) - 3 (1)] = 2 - 3 = 1 A33 = [2 (-2) - 3 (1)] = -4 - 3 = -7 ![]() x = 1, y = 2 且 z = -1 是给定方程组的解。 14. x - y + 2z = 7 解决方案 给定的方程组 x - y + 2z = 7, 3x + 4y - 5z = -5 和 2x - y + 3z = 12 此方程组可以重写为 AX = B 的形式,其中 ![]() = 1 {4 (3) - (-5) (-1)} - (-1) {3 (3) - (-5) (2)} + 2 {3 (-1) - 4 (2)} = (12 - 5) + (9 + 10) + 2 (-3 - 8) = 7 + 19 + 2 (-11) = 26 - 22 = 4 |A| ≠ 0。所以,A-1 存在。 A11 = [4 (3) - (-5) (-1)] = 12 - 5 = 7 A12 = -[3 (3) - (-5) (2)] = -(9 + 10) = -19 A13 = [3 (-1) - 4 (2)] = -3 - 8 = -11 A21 = -[(-1) (3) - 2 (-1)] = -(-3 + 2) = 1 A22 = [1 (3) - 2 (2)] = 3 - 4 = -1 A23 = -[1 (-1) - (-1) (2)] = -(-1 + 2) = -1 A31 = [(-1) (-5) - 2 (4)] = 5 - 8 = -3 A32 = -[1 (-5) - 2 (3)] = (-5 - 6) = 11 A33 = [1 (4) - (-1) (3)] = 4 + 3 = 7 ![]() x = 2, y = 1 且 z = 3 是给定方程组的解。 15. 如果 A = 2x - 3y + 5z = 11 解决方案 给定的方程组 2x - 3y + 5z = 11 此方程组可以重写为 AX = B 的形式,其中 ![]() = 2 {2 (-2) - (-4) (1)} - (-3) {3 (-2) - (-4) (1)} + 5 {3 (1) - 2 (1)} = 2 (-4 + 4) + 3 (-6 + 4) + 5 (3 - 2) = 2 (0) + 3 (-2) + 5 (1) = 0 - 6 + 5 = -1 |A| ≠ 0。所以,A-1 存在。 A11 = [2 (-2) - (-4) (1)] = -4 + 4 = 0 A12 = -[3 (-2) - (-4) (1)] = -(-6 + 4) = 2 A13 = [3 (1) - 2 (1)] = 3 - 2 = 1 A21 = -[(-3) (-2) - 5 (1)] = -(6 - 5) = -1 A22 = [2 (-2) - 5 (1)] = -4 - 5 = -9 A23 = -[2 (1) - (-3) (1)] = -(2 + 3) = -5 A31 = [(-3) (-4) - 5 (2)] = 12 - 10 = 2 A32 = -[2 (-4) - 5 (3)] = -(-8 - 15) = 23 A33 = [2 (2) - (-3) (3)] = 4 + 9 = 13 ![]() x = 1, y = 2 且 z = 3 是给定方程组的解。 16. 4 公斤洋葱、3 公斤小麦和 2 公斤大米的成本为 60 卢比。2 公斤洋葱、4 公斤小麦和 6 公斤大米的成本为 90 卢比。6 公斤洋葱、2 公斤小麦和 3 公斤大米的成本为 70 卢比。通过矩阵方法求每种商品的每公斤成本。 解决方案 设洋葱每公斤(卢比)的成本为 x,小麦每公斤(卢比)的成本为 y,大米每公斤(卢比)的成本为 z。 已知 4 公斤洋葱、3 公斤小麦和 2 公斤大米的成本为 60 卢比。2 公斤洋葱、4 公斤小麦和 6 公斤大米的成本为 90 卢比。6 公斤洋葱、2 公斤小麦和 3 公斤大米的成本为 70 卢比。因此, 4x + 3y + 2z = 60 2x + 4y + 6z = 90 6x + 2y + 3z = 70 此方程组可以重写为 AX = B 的形式,其中 ![]() = 4 {4 (3) - (6) (2)} - 3 {2 (3) - 6 (6)} + 2 {2 (2) - 4 (6)} = 4 (12 - 12) - 3 (6 - 36) + 2 (4 - 24) = 4 (0) - 3 (-30) + 2 (-20) = 0 + 90 - 40 = 50 |A| ≠ 0。所以,A-1 存在。 A11 = [4 (3) - 6 (2)] = 12 - 12 = 0 A12 = -[2 (3) - 6 (6)] = -(6 - 36) = 30 A13 = [2 (2) - 4 (6)] = 2 - 1 = -20 A21 = -[3 (3) - 2 (2)] = -(9 - 4) = -5 A22 = [4 (3) - 2 (6)] = 12 - 12 = 0 A23 = -[4 (2) - 3 (6)] = -(8 - 18) = 10 A31 = [3 (6) - 2 (4)] = 18 - 8 = 10 A32 = -[4 (6) - 2 (2)] = -(24 - 4) = -20 A33 = [4 (4) - 3 (2)] = 16 - 6 = 10 ![]() x = 5, y = 8 且 z = 8。 因此,洋葱每公斤价格为 5 卢比,小麦每公斤价格为 8 卢比,大米每公斤价格为 8 卢比。 杂项练习![]() = x {-x (x) - 1 (1)} - sin θ {-sin θ (x) - 1 (cos θ)} + cos θ {-sin θ (1) - (-x) (cos θ)} = x (-x2 - 1) - sin θ (-x sin θ - cos θ) + cos θ (-sin θ + x cos θ) = -x3 - x + x sin2 θ + sin θ cos θ - sin θ cos θ + x cos2 θ = -x3 - x + x (sin2 θ + cos2 θ) = -x3 - x + x (1) = -x3 - x + x = -x3 ![]() ![]() = cos α cos β {cos β (cos α) - 0 (sin α sin β)} - cos α sin β {-sin β (cos α) - 0 (sin α cos β) - sin α {-sin β (sin α sin β) - cos β (sin α cos β)} = cos α cos β {cos α cos β - 0} - cos α sin β (-sin β cos α - 0) - sin α (-sin α sin2 β - sin α cos2 β) = cos2 α cos2 β + sin2 β cos2 α + sin2 α sin2 β + sin2 α cos2 β = cos2 α (cos2 β + sin2 β) + sin2 α (sin2 β + cos2 β) = cos2 α (1) + sin2 α (1) = sin2 α + cos2 α = 1 ![]() = 1 {3 (1) - 0 (-2)} - 2 {-1 (1) - 0 (0)} - 2 {-1 (-2) - 3 (0)} = (3 + 0) - 2 (-1 - 0) - 2 (2 - 0) = 3 + 2 - 4 = 1 |B| ≠ 0。所以,B-1 存在。 B11 = [3 (1) - 0 (-2)] = 3 + 0 = 3 B12 = -[-1 (1) - 0 (0)] = -(-1) = 1 B13 = [-1 (-2) - 3 (0)] = 2 - 0 = 2 B21 = -[2 (1) - (-2) (-2)] = -(2 - 4) = 2 B22 = [1 (1) - (-2) (0)] = 1 + 0 = 1 B23 = -[1 (-2) - 2 (0)] = -(-2 - 0) = 2 B31 = [2 (0) - (-2) (3)] = 0 + 6 = 6 B32 = -[1 (0) - (-2) (-1)] = -(0 - 2) = 2 B33 = [1 (3) - 2 (-1)] = 3 + 2 = 5 ![]() ![]() = 1 {3 (5) - 1 (1)} - (-2) {-2 (5) - 1 (1)} + 1 {-2 (1) - 3 (1)} = (15 - 1) + 2 (-10 - 1) + (-2 - 3) = 14 + 2 (-11) - 5 = 9 - 22 = -13 |A| ≠ 0。所以,A-1 存在。 A11 = [3 (5) - 1 (1)] = 15 - 1 = 14 A12 = -[-2 (5) - 1 (1)] = -(-10 - 1) = 11 A13 = [-2 (1) - 3 (1)] = -2 - 3 = -5 A21 = -[-2 (5) - 1 (1)] = -(-10 - 1) = 11 A22 = [1 (5) - 1 (1)] = 5 - 1 = 4 A23 = -[1 (1) - (-2) (1)] = -(1 + 2) = -3 A31 = [-2 (1) - 1 (3)] = -2 - 3 = -5 A32 = -[1 (1) - 1 (-2)] = -(1 + 2) = -3 A33 = [1 (3) - (-2) (-2)] = 3 - 4 = -1 ![]() = 14 {4 (-1) - (-3) (-3)} - 11 {11 (-1) - (-3) (-5)} - 5 {11 (-3) - 4 (-5)} = 14 (-4 - 9) - 11 (-11 - 15) - 5 (-33 + 20) = 14 (-13) - 11 (-26) - 5 (-13) = -182 + 286 + 65 = 169 |adj A| ≠ 0。所以,(adj A)-1 存在。 (adj A)11 = [4 (-1) - (-3) (-3)] = -4 - 9 = -13 (adj A)12 = -[11 (-1) - (-3) (-5)] = -(-11 - 15) = 26 (adj A)13 = [11 (-3) - 4 (-5)] = -33 + 20 = -13 (adj A)21 = -[11 (-1) - (-5) (-3)] = -(-11 - 15) = 26 (adj A)22 = [14 (-1) - (-5) (-5)] = -14 - 25 = -39 (adj A)23 = -[14 (-3) - 11 (-5)] = -(-42 + 55) = -13 (adj A)31 = [11 (-3) - 5 (-5)] = -33 + 20 = -13 (adj A)32 = -[14 (-3) - (-5) (11)] = -(-42 + 55) = -13 (adj A)33 = [14 (4) - 11 (11)] = 56 - 121 = -65 ![]() |A-1| = (-14/13) [(-4/13) (1/13) - (3/13) (3/13)] - (-11/13) [(-11/13) (1/13) - (3/13) (5/13)] + (5/13) [(-11/13) (3/13) - (-4/13) (5/13)] = (-14/13) [-4/169 - 9/169] + (11/13) [-11/169 - 15/169] + (5/13) [-33/169 + 20/169] = (-14/13) [-13/169] + (11/13) [-26/169] + (5/13) [-13/169] = (-14/13) [-1/13] + (11/13) [-2/13] + (5/13) [-1/13] = 14/169 - 22/169 - 5/169 = -13/169 = -1/13 (A-1)11 = [(-4/13) (1/13) - (3/13) (3/13)] = -4/169 - 9/169 = -13/169 = -1/13 (A-1)12 = -[(-11/13) (1/13) - (3/13) (5/13)] = -(-11/169 - 15/169) = 26/169 = 2/13 (A-1)13 = [(-11/13) (3/13) - (-4/13) (5/13)] = -33/169 + 20/169 = -13/169 = -1/13 (A-1)21 = -[(-11/13) (1/13) - (5/13) (3/13)] = -(-11/169 - 15/169) = 26/169 = 2/13 (A-1)22 = [(-14/13) (1/13) - (5/13) (5/13)] = -14/169 - 25/169 = -39/169 = -3/13 (A-1)23 = -[(-14/13) (3/13) - (-11/13) (5/13)] = -(-42/169 + 55/169) = -13/169 = -1/13 (A-1)31 = [(-11/13) (3/13) - 5/13 (-4/13)] = -33/169 + 20/169 = -13/169 = -1/13 (A-1)32 = -[(-14/13) (3/13) - (5/13) (-11/13)] = -(-42/169 + 55/169) = -13/169 = -1/13 (A-1)33 = [(-14/13) (-4/13) - (-11/13) (-11/13)] = 56/169 - 121/169 = -65/169 = -5/13 ![]() (A-1)-1 = A 因此,证明 (A-1)-1 = A。 ![]() ![]() 沿 C1 展开 = 2(x + y) [0 {y (y) - (x - y) (x)} - 0 {-x (y) - y (x)} + 1 {-x (x - y) - y (y)}] = 2(x + y) [0 - 0 - x2 + xy - y2] = -2(x + y) [x2 - xy + y2] = -2 (x3 + y3) ![]() 沿 C1 展开 = 0 [y (x + y) - (-x) (x)] - 0 [-y (x + y) - 0 (x)] + 1 [-y (-x) - 0 (y)] = 0 - 0 + (xy - 0) = xy 在练习题 11 至 15 中使用行列式的性质,证明: 7. 求解方程组 2/x + 3/y + 10/z = 4 解决方案 给定的方程组 2/x + 3/y + 10/z = 4 4/x - 6/y + 5/z = 1 6/x + 9/y - 20/z = 2 此方程组可以重写为 AX = B 的形式,其中 ![]() = 2 {-6 (-20) - 5 (9)} - 3 {4 (-20) - 5 (6)} + 10 {4 (9) - (-6) (6)} = 2 (120 - 45) - 3 (-80 - 30) + 10 (36 + 36) = 2 (75) - 3 (-110) + 10 (72) = 150 + 330 + 720 = 1200 |A| ≠ 0。所以,A-1 存在。 A11 = [-6 (-20) - 5 (9)] = 120 - 45 = 75 A12 = -[4 (-20) - 5 (6)] = -(-80 - 30) = 110 A13 = [4 (9) - (-6) (6)] = 36 + 36 = 72 A21 = -[3 (-20) - 10 (9)] = -(-60 - 90) = 150 A22 = [2 (-20) - 10 (6)] = -40 - 60 = -100 A23 = -[2 (9) - (3) (6)] = -(18 - 18) = 0 A31 = [3 (5) - 10 (-6)] = 15 + 60 = 75 A32 = -[2 (5) - 10 (4)] = -(10 - 40) = 30 A33 = [2 (-6) - 3 (4)] = -12 - 12 = -24 ![]() 现在,AX = B X = A-1 B ![]() 1/x = 1/2 ⇒ x = 2 1/y = 1/3 ⇒ y = 4 1/z = 1/5 ⇒ z = 5 x = 2, y = 3 且 z = 5 是给定方程组的解。 选择正确答案 ![]() = x {yz - 0 (0)} - 0 {0 (z) - 0 (0)} + 0 {0 (0) - y (0)} = x (yz) = xyz |A| ≠ 0。所以,A-1 存在。 A11 = [yz - 0 (0)] = yz A12 = -[0 (z) - 0 (0)] = 0 A13 = [0 (0) - y (0)] = 0 A21 = -[0 (z) - 0 (0)] = 0 A22 = [xz - 0 (0)] = xz A23 = -[x (0) - 0 (0)] = 0 A31 = [0 (0) - 0 (y)] = 0 A32 = -[x (0) - 0 (0)] = 0 A33 = [xy - 0 (0)] = xy ![]() 因此,(A) 是正确答案。 ![]() = 1 [1 (1) - sin θ (-sin θ)] - sin θ [-sin θ (1) - sin θ (-1)] + 1 [-sin θ (-sin θ) - 1 (-1)] = [1 + sin2 θ] - sin θ [-sin θ + sin θ] + [sin2 θ + 1] = 2 + 2 sin2 θ = 2 (1 + sin2 θ) 已知 0 ≤ θ ≤ 2π。因此, 0 ≤ sin θ ≤ 1 = 0 ≤ sin2 θ ≤ 1 = 1 + 0 ≤ 1 + sin2 θ ≤ 1 + 1 = 1 ≤ 1 + sin2 θ ≤ 2 = 2 (1) ≤ 2 (1 + sin2 θ) ≤ 2 (2) = 2 ≤ 2 (1 + sin2 θ) ≤ 4 = 2 ≤ Det (A) ≤ 4 因此,(D) 是正确答案。 |
我们请求您订阅我们的新闻通讯以获取最新更新。