12 年级数学第 5 章:连续性和可微性 的 NCERT 解决方案

13 Feb 2025 | 86 分钟阅读

练习 5.1

1. 证明函数 f(x) = 5x - 3 在 x = 0, x = -3 和 x = 5 处连续。

解决方案

f (x) = 5x - 3

在 x = 0 处,

f (x) = f (0) = 5 (0) - 3 = -3

左极限 (LHL) = limx → 0- f (x) = limx → 0- (5x - 3) = -3

右极限 (RHL) = limx → 0+ f (x) = limx → 0+ (5x - 3) = -3

因此,LHL = RHL = f (0) = -3。

所以,函数 f (x) 在 x = 0 处连续。

在 x = -3 处,

f (x) = f (-3) = 5 (-3) - 3 = -15 - 3 = -18

左极限 (LHL) = limx → 3- f (x) = limx → 3- (5x - 3) = -18

右极限 (RHL) = limx → 3+ f (x) = limx → 3+ (5x - 3) = -18

因此,LHL = RHL = f (-3) = -18。

所以,函数 f (x) 在 x = -3 处连续。

在 x = 5 处,

f (x) = f (5) = 5 (5) - 3 = 25 - 3 = 22

左极限 (LHL) = limx → 5- f (x) = limx → 5- (5x - 3) = 22

右极限 (RHL) = limx → 5+ f (x) = limx → 5+ (5x - 3) = 22

因此,LHL = RHL = f (5) = 22。

所以,函数 f (x) 在 x = 5 处连续。

2. 检验函数 f(x) = 2x2 - 1 在 x = 3 处是否连续。

解决方案

f (x) = 2x2 - 1

在 x = 3 处,

f (x) = f (3) = 2 (3)2 - 1 = 2 (9) - 1 = 17

左极限 (LHL) = limx → 3- f (x) = limx → 3- (2x2 - 1) = 17

右极限 (RHL) = limx → 3+ f (x) = limx → 3+ (2x2 - 1) = 17

因此,LHL = RHL = f (3) = 17。

所以,函数 f (x) 在 x = 3 处连续。

3. 检验以下函数的连续性。

  1. f (x) = x - 5
  2. f (x) = 1/(x - 5), x ≠ 5
  3. f (x) = (x2 - 25)/(x + 5), x ≠ 5
  4. f (x) = |x - 5|

解决方案

(a) f (x) = x - 5

设 k 为任意实数。

在 x = k 处,

f (k) = k - 5

左极限 (LHL) = limx → k- f (x) = limx → k- (x - 5) = k - 5

右极限 (RHL) = limx → k+ f (x) = limx → k+ (x - 5) = k - 5

因此,LHL = RHL = f (k) = k - 5。

所以,函数 f (x) 在 x = k 处连续。

(b) f (x) = 1/(x - 5), x ≠ 5

设 k 为任意实数,且 k ≠ 5。

在 x = k 处,

f (k) = 1/(k - 5)

左极限 (LHL) = limx → k- f (x) = limx → k- 1/(x - 5) = 1/(k - 5)

右极限 (RHL) = limx → k+ f (x) = limx → k+ 1/(x - 5) = 1/(k - 5)

因此,LHL = RHL = f (k) = 1/(k - 5)。

所以,函数 f (x) 在 x = k 处连续。

(c) f (x) = (x2 - 25)/(x + 5), x ≠ -5

设 k 为任意实数,且 k ≠ -5。

在 x = k 处,

f (k) = (k2 - 25)/(k + 5) = (k2 - 52)/(k + 5) = [(k + 5)(k - 5)]/(k + 5) = k - 5

左极限 (LHL) = limx → k- f (x) = limx → k- (x2 - 25)/(x + 5) = limx → k- [(k + 5)(k - 5)]/(k + 5) = k - 5

右极限 (RHL) = limx → k+ f (x) = limx → k+ (x2 - 25)/(x + 5) = limx → k+ [(k + 5)(k - 5)]/(k + 5) = k - 5

因此,LHL = RHL = f (k) = k - 5。

所以,函数 f (x) 在 x = k 处连续。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

设 k 为任意实数。k < 5,或 k = 5,或 k > 5。

在 x = k 处,

如果 k = 5

f (k) = k - 5

limx → k f (x) = limx → k (x - 5) = k - 5

因此,limx → k f (x) = f (k)

所以,函数 f 在 x = 5 处连续。

如果 k < 5

f (k) = 5 - k

limx → k f (x) = limx → k |x - 5| = limx → k (5 - x) = 5 - k

因此,limx → k f (x) = f (k)

因此,函数 f 在 x < 5 处连续。

如果 k > 5

f (k) = k - 5

limx → k f (x) = limx → k |x - 5| = limx → k (x - 5) = k - 5

因此,limx → k f (x) = f (k)

因此,函数 f 在 x > 5 处连续。

因此,函数 f 对于所有实数都连续。

4. 证明函数 f(x) = xn 在 x = n 处连续,其中 n 为正整数。

解决方案

f (x) = xn

在 x = n 处,

f (n) = nn

limx → n f (x) = limx → n xn = nn

因此,limx → n f (x) = f (n)。

因此,函数 f 在 x = n 处连续,其中 n 为正整数。

5. 函数 f 定义如下,是否在 x = 0? 在 x = 1? 在 x = 2? 连续?

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

f (0) = 0

解决方案

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

在 x = 0 处,

limx → 0 f (x) = limx → 0 x = 0

因此,limx → 0 f (x) = f (0)。

所以,函数 f 在 x = 0 处连续。

在 x = 1 处,

f (1) = 1

左极限 (LHL) = limx → 1- f (x) = limx → 1- (x) = 1

右极限 (RHL) = limx → 1+ f (x) = limx → 1- (5) = 5

因此,LHL ≠ RHL。

所以,函数 f 在 x = 1 处不连续。

在 x = 2 处,

f (2) = 5

左极限 (LHL) = limx → 2- f (x) = limx → 2- (5) = 5

右极限 (RHL) = limx → 1- f (x) = limx → 1- (5) = 5

因此,LHL = RHL = f (2)。

所以,函数 f 在 x = 2 处连续。

求 f 的所有不连续点,其中 f 定义为

设 k 为任意实数。k < 2,或 k = 2,或 k > 2。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

解决方案

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 2

在 x = k 处,

f (k) = 2k + 3

limx → k f (x) = limx → k (2x + 3) = 2k + 3

因此,函数 f 在小于 2 的实数上连续。

因此,limx → k f (x) = f (k)

如果 k = 2

f (2) = 2k + 3 = 2(2) + 3 = 7

左极限 (LHL) = limx → 2- f (x) = limx → 2- (2x + 3) = 2k + 3 = 7

右极限 (RHL) = limx → 2+ f (x) = limx → 2- (2x - 3) = 2k - 3 = 1

因此,函数 f 在 x = 2 处不连续。

所以,函数 f 在 x = 1 处不连续。

如果 k > 2

f (k) = 2k - 3

limx → k f (x) = limx → k (2x - 3) = 2k - 3

因此,函数 f 在 x > 2 处连续。

因此,limx → k f (x) = f (k)

因此,函数 f 只在 x = 2 处不连续。

设 k 为实数。k < -3 或 k = -3 或 -3 < k < 3 或 k = 3 或 k > 3。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

解决方案

如果 k < -3

f (k) = -k + 3

limx → k f (x) = limx → k (-x + 3) = -k + 3

因此,limx → k f (x) = f (k)。

所以,函数 f 在所有小于 -3 的实数上连续。

如果 k = -3

f (k) = f (-3) = -(-3) + 3 = 3 + 3 = 6

左极限 (LHL) = limx → -3- f (x) = limx → -3- (-x + 3) = -(-3) + 3 = 6

右极限 (RHL) = limx → -3+ f (x) = limx → -3+ (-2x) = -2(-3) = 6

因此,LHL = RHL = f (k)。

所以,函数 f 在 x = -3 处连续。

如果 -3 < k < 3

f (k) = -2k

limx → k f (x) = limx → k (-2x) = -2k

因此,函数 f 在所有小于 3 且大于 -3 的实数上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

如果 k = 3

f (k) = f (3) = 3 + 3 = 6

左极限 (LHL) = limx → 3- f (x) = limx → 3- (-2x) = -2(3) = -6

右极限 (RHL) = limx → 3+ f (x) = limx → 3+ (6x + 2) = 6(3) + 2 = 18 + 2 = 20

因此,函数 f 在 x = 3 处不连续。

所以,函数 f 在 x = 1 处不连续。

如果 k > 3

f (k) = 6k + 2

limx → k f (x) = limx → k (6x + 2) = 6k + 2

因此,函数 f 在所有大于 3 的实数上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 只在 x = 3 处不连续。

设 k 为实数。k < 0 或 k = 0 或 k > 0。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 0

f (k) = -k/k = -1

limx → k f (x) = limx → k (-x/x) = -1

因此,函数 f 在所有小于 0 的实数上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

如果 k = 0

f (k) = f (0) = 0

左极限 (LHL) = limx → 0- f (x) = limx → 0- (-x/x) = -1

右极限 (RHL) = limx → 0+ f (x) = limx → 0+ (x/x) = 1

因此,函数 f 在 x = 0 处不连续。

所以,函数 f 在 x = 1 处不连续。

如果 k > 0

f (k) = k/k = 1

limx → k f (x) = limx → k (x/x) = 1

因此,函数 f 在所有大于 0 的实数上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 只在 x = 0 处不连续。

设 k 为实数。k < 1 或 k = 1 或 k > 1。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 1

f (k) = k2 + 1

limx → k f (x) = limx → k (x2 + 1) = k2 + 1

因此,函数 f 在所有小于 1 的实数上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

如果 k = 1

f (k) = f (1) = 1 + 1 = 2

左极限 (LHL) = limx → 1- f (x) = limx → 1- (x2 + 1) = 12 + 1 = 2

右极限 (RHL) = limx → 1+ f (x) = limx → 1+ (x + 1) = 1 + 1 = 2

因此,函数 f 在 x = 1 处连续。

所以,函数 f 在 x = -3 处连续。

如果 k > 1

f (k) = k + 1

limx → k f (x) = limx → k (x + 1) = k + 1

因此,函数 f 在所有大于 1 的实数上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 对于所有实数都连续,并且没有不连续点。

设 k 为实数。k < 2 或 k = 2 或 k > 2。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

f (k) = k3 - 3

f (k) = 2k + 3

limx → k f (x) = limx → k (x3 - 3) = k3 - 3

因此,函数 f 在所有小于 2 的实数上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

f (k) = f (2) = 23 - 3 = 8 - 3 = 5

f (2) = 2k + 3 = 2(2) + 3 = 7

左极限 (LHL) = limx → 2- f (x) = limx → 2- (x3 - 3) = 23 - 3 = 5

右极限 (RHL) = limx → 2+ f (x) = limx → 2+ (x2 + 1) = 22 + 1 = 5

因此,函数 f 在 x = 2 处连续。

所以,函数 f 在 x = -3 处连续。

因此,函数 f 在所有大于 2 的实数上连续。

f (k) = 2k - 3

limx → k f (x) = limx → k (x2 + 1) = k2 + 1

因此,函数 f 在所有小于 1 的实数上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

f (k) = k10 - 1

设 k 为实数。k < 2 或 k = 2 或 k > 2。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 1

f (k) = k2 + 1

limx → k f (x) = limx → k (x10 - 1) = k10 - 1

f (k) = f (1) = 110 - 1 = 1 - 1 = 0

所以,函数 f 在所有小于 -3 的实数上连续。

如果 k = 1

f (k) = f (1) = 1 + 1 = 2

左极限 (LHL) = limx → 1- f (x) = limx → 1- (x10 - 1) = 110 - 1 = 0

右极限 (RHL) = limx → 1+ f (x) = limx → 1+ (x2) = 12 = 1

f (k) = k2

所以,函数 f 在 x = 1 处不连续。

在 x = 2 处,

f (k) = k + 1

limx → k f (x) = limx → k (x2) = k2

因此,函数 f 只在 x = 1 处不连续。

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 对于所有实数都连续,并且没有不连续点。

13. 函数 f 定义如下,是否连续?

f (k) = k + 5

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 1

f (k) = k2 + 1

limx → k f (x) = limx → k (x + 5) = k + 5

f (k) = f (1) = 1 + 5 = 6

所以,函数 f 在所有小于 -3 的实数上连续。

如果 k = 1

f (k) = f (1) = 1 + 1 = 2

左极限 (LHL) = limx → 1- f (x) = limx → 1- (x + 5) = 1 + 5 = 6

右极限 (RHL) = limx → 1+ f (x) = limx → 1+ (x - 5) = 1 - 5 = -4

讨论函数 f 的连续性,其中 f 定义为

所以,函数 f 在 x = 1 处不连续。

在 x = 2 处,

f (k) = k + 1

f (k) = k - 5

limx → k f (x) = limx → k (x - 5) = k - 5

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 对于所有实数都连续,并且没有不连续点。

13. 函数 f 定义如下,是否连续?

设 k 为实数。0 ≤ k ≤ 1 或 k = 1 或 1 < k < 3 或 k = 3 或 3 ≤ k ≤ 10。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 0 ≤ k ≤ 1

f (k) = 3

limx → k f (x) = limx → k (3) = 3

因此,函数 f 在 0 ≤ x ≤ 1 上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

f (k) = f (1) = 3

f (k) = f (1) = 1 + 1 = 2

左极限 (LHL) = limx → 1- f (x) = limx → 1- (3) = 3

右极限 (RHL) = limx → 1+ f (x) = limx → 1+ (4) = 4

如果 1 < k < 3

所以,函数 f 在 x = 1 处不连续。

在 x = 2 处,

f (k) = 4

limx → k f (x) = limx → k (4) = 4

因此,函数 f 在 1 < x < 3 上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

f (k) = f (3) = 5

f (k) = f (3) = 3 + 3 = 6

左极限 (LHL) = limx → 3- f (x) = limx → 3- (4) = 4

右极限 (RHL) = limx → 3+ f (x) = limx → 3+ (5) = 5

因此,函数 f 在 x = 3 处不连续。

所以,函数 f 在 x = 1 处不连续。

如果 3 ≤ k ≤ 10

f (k) = 5

limx → k f (x) = limx → k (5) = 5

因此,函数 f 在 3 ≤ x ≤ 10 上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

因此,给定的函数 f 只在 x = 1 和 x = 3 处不连续。

设 k 为实数。k < 0 或 k = 0 或 0 ≤ k ≤ 1 或 k = 1 或 k > 1。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 0

f (k) = -k/k = -1

f (k) = 2k

limx → k f (x) = limx → k (2x) = 2k

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 在 x < 0 上连续。

f (k) = f (0) = 0

左极限 (LHL) = limx → 0- f (x) = limx → 0- (-x/x) = -1

左极限 (LHL) = limx → 0- f (x) = limx → 0- (2x) = 2 (0) = 0

右极限 (RHL) = limx → 0+ f (x) = limx → 0+ (0) = 0

所以,函数 f 在 x = -3 处连续。

在 x = 1 处,

f (k) = 3

f (k) = 0

limx → k f (x) = limx → k (0) = 0

所以,函数 f 在所有小于 -3 的实数上连续。

f (k) = f (1) = 3

f (k) = f (1) = 1 + 1 = 2

f (k) = f (1) = 0

左极限 (LHL) = limx → 1- f (x) = limx → 1- (0) = 0

右极限 (RHL) = limx → 1+ f (x) = limx → 1+ (4x) = 4 (1) = 4

所以,函数 f 在 x = 1 处不连续。

在 x = 2 处,

f (k) = k + 1

f (k) = 4k

limx → k f (x) = limx → k (4x) = 4k

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 在 x > 1 上连续。

因此,给定的函数 f 只在 x = 1 处不连续。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

设 k 为实数。k < -1 或 k = -1 或 -1 < k ≤ 1 或 k = 1 或 k > 1。

如果 k < -1

f (k) = -2

limx → k f (x) = limx → k (-2) = -2

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 在 x < -1 上连续。

如果 k = -1

f (k) = f (-1) = -2

左极限 (LHL) = limx → -1- f (x) = limx → -1- (-2) = -2

右极限 (RHL) = limx → -1+ f (x) = limx → -1+ (2x) = 2 (-1) = -2

所以,函数 f 在 x = -3 处连续。

因此,函数 f 在 x = -1 处连续。

如果 -1 < k ≤ 1

f (k) = 2k

limx → k f (x) = limx → k (2x) = 2k

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 在 -1 < x ≤ 1 上连续。

f (k) = f (1) = 1 + 1 = 2

f (k) = f (1) = 2

左极限 (LHL) = limx → 1- f (x) = limx → 1- (2x) = 2 (1) = 2

右极限 (RHL) = limx → 1+ f (x) = limx → 1+ (2) = 2

所以,函数 f 在 x = -3 处连续。

如果 k > 1

f (k) = k + 1

f (k) = 2

limx → k f (x) = limx → k (2) = 2

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 在 x > 1 上连续。

因此,给定的函数 f 对于所有实数都连续。

17. 找到 a 和 b 的关系,使得函数 f 定义为

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

在 x = 3 处连续。因此,LHL = RHL = f (3)。

左极限 (LHL) = limx → 3- f (x) = limx → 3- (ax + 1) = a (3) + 1 = 3a + 1

右极限 (RHL) = limx → 3+ f (x) = limx → 3+ (bx + 3) = b (3) + 3 = 3b + 3

f (3) = a (3) + 1 = 3a + 1

现在,

3a + 1 = 3b + 3 = 3a + 1

3a + 1 = 3b + 3

3a = 3b + 2

a = (3b + 2)/3

a = b + 2/3

因此,a 和 b 之间的关系为 a = b + 2/3。

18. 对于 λ 的哪个值,函数 f 定义为

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

在 x = 0 处连续。因此,LHL = RHL = f (0)。

左极限 (LHL) = limx → 0- f (x) = limx → 0- (λ (x2 - 2x)) = λ (0 - 0) = λ (0)

右极限 (RHL) = limx → 0+ f (x) = limx → 0+ (4x + 1) = 4 (0) + 1 = 1

f (0) = λ (02 - 2 (0)) = λ (0)

现在,

λ (0) = 1 = λ (0)

λ = 1/0

因此,不存在 λ 的实数值可以使给定的函数 f 在 x = 0 处连续。

f (1) = 1

f (x) = f (1) = 4 + 1 = 5

左极限 (LHL) = limx → 1- f (x) = limx → 1- (4x + 1) = 4 + 1 = 5

右极限 (RHL) = limx → 1+ f (x) = limx → 1+ (4x + 1) = 4 + 1 = 5

所以,函数 f 在 x = -3 处连续。

如果 k > 1

19. 证明由 g (x) = x - [x] 定义的函数在所有整数点处不连续。其中 [x] 表示小于或等于 x 的最大整数。

解决方案

设 k 为整数。

左极限 (LHL) = limx → k- g (x) = limx → k- (x - [x]) = k - (k - 1) = 1

右极限 (RHL) = limx → k+ g (x) = limx → k+ (x - [x]) = k - (k) = 0

所以,函数 f 在 x = 1 处不连续。

因此,函数 f 在所有整数处不连续。

20. 由 f (x) = x2 - sin x + 5 定义的函数在 x = π 处是否连续?

解决方案

f (π) = π2 - sin π + 5 = π2 - 0 + 5 = π2 + 5

limx → k f (x) = limx → k (x2 - sin x + 5) = π2 - sin π + 5 = π2 + 5

因此,limx → k f (x) = f (π)。

因此,函数 f 在 x = π 处连续。

21. 讨论以下函数的连续性

(a) f (x) = sin x + cos x

(b) f (x) = sin x - cos x

(c) f (x) = sin x. cos x

解决方案

设 g (x) = sin x。

设 k 为任意实数。

在 x = k 处,

g (k) = sin k

左极限 (LHL) = limx → k- g (x) = limx → k- (sin x) = limh→ 0 (sin (k - h)) = sin (k - 0) = sin k

右极限 (RHL) = limx → k+ g (x) = limx → k+ (sin x) = limh→ 0 (sin (k + h)) = sin (k + 0) = sin k

因此,LHL = RHL = g (k)。

所以,函数 g 对于所有实数都连续。

设 h (x) = cos x。

设 k 为任意实数。

在 x = k 处,

h (k) = cos k

左极限 (LHL) = limx → k- h (x) = limx → k- (cos x) = limh→ 0 (cos (k - h)) = cos (k - 0) = cos k

右极限 (RHL) = limx → k+ h (x) = limx → k+ (cos x) = limh→ 0 (cos (k + h)) = cos (k + 0) = cos k

因此,LHL = RHL = h (k)。

所以,函数 h 对于所有实数都连续。

现在,我们知道当两个函数 g 和 h 连续时,函数 g + h, g - h, 和 gh 都连续。

因此,(a) f (x) = sin x + cos x, (b) f (x) = sin x - cos x, 和 (c) f (x) = sin x. cos x 都是连续函数。

22. 讨论余弦、余割、正割和余切函数的连续性。

解决方案

设 g (x) = sin x。

设 k 为任意实数。

在 x = k 处,

g (k) = sin k

左极限 (LHL) = limx → k- g (x) = limx → k- (sin x) = limh→ 0 (sin (k - h)) = sin (k - 0) = sin k

右极限 (RHL) = limx → k+ g (x) = limx → k+ (sin x) = limh→ 0 (sin (k + h)) = sin (k + 0) = sin k

因此,LHL = RHL = g (k)。

所以,函数 g 对于所有实数都连续。

设 h (x) = cos x。

设 k 为任意实数。

在 x = k 处,

h (k) = cos k

左极限 (LHL) = limx → k- h (x) = limx → k- (cos x) = limh→ 0 (cos (k - h)) = cos (k - 0) = cos k

右极限 (RHL) = limx → k+ h (x) = limx → k+ (cos x) = limh→ 0 (cos (k + h)) = cos (k + 0) = cos k

因此,LHL = RHL = h (k)。

所以,函数 h 对于所有实数都连续。

现在,我们知道当两个函数 g 和 h 连续时,函数 g/h (其中 h ≠ 0), 1/h (其中 h ≠ 0), 和 1/g (其中 g ≠ 0) 都连续。因此,

cosec x = 1/sin x, sin x ≠ 0 当 x ≠ nπ 时,n ∈ Z。

所以,cosec x 在 x = nπ (n ∈ Z) 处除了所有点都连续。

sec x = 1/cos x, cos x ≠ 0 当 x ≠ (2n + 1)π/2 时,n ∈ Z。

所以,sec x 在 x = (2n + 1)π/2 (n ∈ Z) 处除了所有点都连续。

cot x = cos x/sin x, sin x ≠ 0 当 x ≠ nπ 时,n ∈ Z。

所以,cot x 在 x = nπ (n ∈ Z) 处除了所有点都连续。

23. 求 f 的所有不连续点,其中

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 0

f (k) = -k/k = -1

f (k) = sin k/k

limx → k f (x) = limx → k (sin x/x) = sin k/k

所以,函数 f 在所有小于 -3 的实数上连续。

如果 k = 0

f (k) = f (0) = 0

f (k) = f (0) = 0 + 1 = 1

左极限 (LHL) = limx → 0- f (x) = limx → 0- (sin x/x) = 1

右极限 (RHL) = limx → 0+ f (x) = limx → 0+ (x + 1) = 0 + 1 = 1

所以,函数 f 在 x = -3 处连续。

在 x = 1 处,

f (k) = k/k = 1

limx → k f (x) = limx → k (x + 1) = k + 1

因此,函数 f 在所有大于 1 的实数上连续。

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 只在 x = 0 处不连续。

因此,函数 f 对于所有实数都连续。

24. 判断由 f(x) 定义的函数

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

是否为连续函数?

解决方案

设 k 为实数。k ≠ 0 或 k = 0。

f (k) = f (0) = 0

左极限 (LHL) = limx → 0- f (x) = limx → 0- (-x/x) = -1

左极限 (LHL) = limx → 0- f (x) = limx → 0- (x2 sin 1/x) = limx → 0 (x2 sin 1/x)

我们知道

-1 ≤ sin 1/x ≤ 1, x ≠ 0

x2 ≤ sin 1/x ≤ x2

limx → 0 (-x2) ≤ limx → 0 (sin 1/x) ≤ limx → 0 (x2)

0 ≤ limx → 0 (sin 1/x) ≤ 0

limx → 0 (sin 1/x) = 0

limx → 0- (x2 sin 1/x) = 0

limx → 0- f (x) = 0

右极限 (RHL) = limx → 0+ f (x) = limx → 0+ (x2 sin 1/x) = limx → 0 (x2 sin 1/x)

我们知道

-1 ≤ sin 1/x ≤ 1, x ≠ 0

x2 ≤ sin 1/x ≤ x2

limx → 0 (-x2) ≤ limx → 0 (sin 1/x) ≤ limx → 0 (x2)

0 ≤ limx → 0 (sin 1/x) ≤ 0

limx → 0 (sin 1/x) = 0

limx → 0+ (x2 sin 1/x) = 0

limx → 0+ f (x) = 0

所以,函数 f 在 x = -3 处连续。

在 x = 1 处,

如果 k ≠ 0

f (k) = k2 sin 1/k

limx → k f (x) = limx → k (x2 sin 1/x) = k2 sin 1/k

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 在所有不等于 0 的实数上连续。

因此,函数 f 对于所有实数都连续。

25. 检验函数 f 的连续性,其中 f 定义为

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

解决方案

设 k 为实数。k ≠ 0 或 k = 0。

f (k) = f (0) = 0

f (k) = f (0) = -1

左极限 (LHL) = limx → 0- f (x) = limx → 0- (sin x - cos x) = 0 - 1 = -1

右极限 (RHL) = limx → 0+ f (x) = limx → 0+ (sin x - cos x) = 0 - 1 = -1

所以,函数 f 在 x = -3 处连续。

在 x = 1 处,

如果 k ≠ 0

f (k) = sin k - cos k

limx → k f (x) = limx → k (sin x - cos x) = sin k - cos k

所以,函数 f 在所有小于 -3 的实数上连续。

因此,函数 f 在所有不等于 0 的实数上连续。

因此,函数 f 对于所有实数都连续。

在练习 26 到 29 中,找到使函数 f 在指定的点处连续的 k 值。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

在 x = π/2 处连续。因此,LHL = RHL = f (π/2)。

f (π/2) = 3

左极限 (LHL) = limx → π/2- f (x) = limx → π/2- (k cos x/(π - x))

= limh → 0 (k cos (π/2 - h)/[π - 2 (π/2 - h)])

右极限 (RHL) = limx → π/2+ f (x) = limx → π/2+ (k cos x/(π - x))

= limh → 0 (k cos (π/2 - h)/[π - 2 (π/2 - h)])

现在,

limh → 0 (k cos (π/2 - h)/[π - 2 (π/2 - h)]) = limh → 0 (k cos (π/2 + h)/[π - 2 (π/2 + h)]) = 3

limh → 0 (k sin h)/2h = limh → 0 [(-k sin h)/(-2h)] = 3

k/2 = -k/-2 = 3 [limh → 0 sin h/h = 1]

k/2 = k/2 = 3

k = 6

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

在 x = 2 处连续。因此,LHL = RHL = f (2)。

f (2) = 3

左极限 (LHL) = limx → 2- f (x) = limx → 2- (kx2)

右极限 (RHL) = limx → 2+ f (x) = limx → 2+ (3)

现在,

limx → 2- (kx2) = limx → 2+ (3) = 3

k (22) = 3 = 3

4k = 3 = 3

k = 3/4

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

在 x = π 处连续。因此,LHL = RHL = f (π)。

f (π) = cos π = -1

左极限 (LHL) = limx → π- f (x) = limx → π- (kx + 1)

右极限 (RHL) = limx → π+ f (x) = limx → π+ (cos x)

现在,

limx → π- (kx + 1) = limx → π+ (cos x) = -1

kπ + 1 = cos π = -1

kπ + 1 = -1 = -1

kπ = -2

k = -2/π

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

在 x = 5 处连续。因此,LHL = RHL = f (5)。

f (5) = 3 (5) - 5 = 15 - 5 = 10

左极限 (LHL) = limx → 5- f (x) = limx → 5- (kx + 1)

右极限 (RHL) = limx → 5+ f (x) = limx → 5+ (3x - 5)

现在,

limx → 5- (kx + 1) = limx → 5+ (3x - 5) = 10

kπ + 1 = 3 (5) - 5 = 10

kπ + 1 = 10 = 10

kπ = 9

k = 9/π

30. 找到使函数 f 定义为

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

在 x = 2 和 x = 10 处连续的 a 和 b 的值。因此,

LHL = RHL = f (2) 且 LHL = RHL = f (10)

如果 x = 2

左极限 (LHL) = limx → 2- f (x) = limx → 2- (5) = 5

左极限 (LHL) = limx → 2- f (x) = limx → 2- (5)

右极限 (RHL) = limx → 2+ f (x) = limx → 2+ (ax + b)

现在,

limx → 2- (5) = limx → 2+ (ax + b) = 5

5 = a (2) + b = 5

5 = 2a + b = 5

b = 5 - 2a

如果 x = 10

f (10) = 21

左极限 (LHL) = limx → 10- f (x) = limx → 10- (ax + b)

右极限 (RHL) = limx → 10+ f (x) = limx → 10+ (21)

现在,

limx → 10- (ax + b) = limx → 10+ (21) = 21

a (10) + b = 21 = 21

10a + b = 21 = 21

b = 21 - 10a

所以,

5 - 2a = 21 - 10a

8a = 16

a = 2

并且 b = 5 - 2(2) = 5 - 4

b = 1

31. 证明由 f(x) = cos (x2) 定义的函数是连续函数。

解决方案

设 g 和 h 定义为两个函数

g (x) = cos x 且 h (x) = x2

假设这两个函数对于所有实数都定义良好,我们可以将给定的函数 f 写成 g 和 h 的组合,即 f = goh。

如果 g 和 h 都连续,则 goh 也连续,即 f 也连续。

对于 g (x) = cos x

设 k 为任意实数。

在 x = k 处,

g (k) = cos k

左极限 (LHL) = limx → k- g (x) = limx → k- (cos x) = limh → 0 (cos (k - h)) = cos (k - 0) = cos k

右极限 (RHL) = limx → k+ g (x) = limx → k+ (cos x) = limh → 0 (cos (k + h)) = cos (k + 0) = cos k

因此,LHL = RHL = g (k)。

所以,函数 g 对于所有实数都连续。

对于 h (x) = x2

设 k 为任意实数。

在 x = k 处,

h (k) = k2

limx → k h (x) = limx → k (x2) = k2

因此,limx → k h (x) = h (k)。

所以,函数 h 对于所有实数都连续。

由于 g 和 h 都是连续函数。因此,goh 也是连续函数。

因此,f 是一个连续函数。

32. 证明由 f(x) = | cos x | 定义的函数是连续函数。

解决方案

设 g 和 h 定义为两个函数

g (x) = cos x 且 h (x) = |x|。

假设这两个函数对于所有实数都定义良好,我们可以将给定的函数 f 写成 g 和 h 的组合,即 f = hog。

如果 g 和 h 都连续,则 hog 也连续,即 f 也连续。

对于 g (x) = cos x

设 k 为任意实数。

在 x = k 处,

g (k) = cos k

左极限 (LHL) = limx → k- g (x) = limx → k- (cos x) = limh → 0 (cos (k - h)) = cos (k - 0) = cos k

右极限 (RHL) = limx → k+ g (x) = limx → k+ (cos x) = limh → 0 (cos (k + h)) = cos (k + 0) = cos k

因此,LHL = RHL = g (k)。

所以,函数 g 对于所有实数都连续。

现在,h (x) = |x|

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 0

f (k) = -k/k = -1

h (k) = -k

limx → k h (x) = limx → k (-x) = -k

因此,limx → k h (x) = h (k)。

因此,函数 h 在所有小于 0 的实数上连续。

f (k) = f (0) = 0

h (k) = h (0) = 0

左极限 (LHL) = limx → 0- h (x) = limx → 0- (-x) = 0

右极限 (RHL) = limx → 0+ h (x) = limx → 0+ (x) = 0

因此,LHL = RHL = h (k)。

因此,函数 h 在 x = 0 处连续。

f (k) = k/k = 1

h (k) = k

limx → k h (x) = limx → k (x) = k

因此,limx → k h (x) = h (k)。

因此,函数 h 在所有大于 0 的实数上连续。

所以,函数 h 对于所有实数都连续。

由于 g 和 h 都是连续函数。因此,hog 也是连续函数。

因此,f 是一个连续函数。

33. 检验 sin |x| 是否是连续函数。

解决方案

设 g 和 h 定义为两个函数

g (x) = sin x 且 h (x) = |x|。

假设这两个函数对于所有实数都定义良好,我们可以将给定的函数 f 写成 g 和 h 的组合,即 f = goh。

如果 g 和 h 都连续,则 goh 也连续,即 f 也连续。

对于 g (x) = sin x

设 k 为任意实数。

在 x = k 处,

g (k) = sin k

左极限 (LHL) = limx → k- g (x) = limx → k- (sin x) = limh → 0 (sin (k - h)) = sin (k - 0) = sin k

右极限 (RHL) = limx → k+ g (x) = limx → k+ (sin x) = limh → 0 (sin (k + h)) = sin (k + 0) = sin k

因此,LHL = RHL = g (k)。

所以,函数 g 对于所有实数都连续。

现在,h (x) = |x|

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 0

f (k) = -k/k = -1

h (k) = -k

limx → k h (x) = limx → k (-x) = -k

因此,limx → k h (x) = h (k)。

因此,函数 h 在所有小于 0 的实数上连续。

f (k) = f (0) = 0

h (k) = h (0) = 0

左极限 (LHL) = limx → 0- h (x) = limx → 0- (-x) = 0

右极限 (RHL) = limx → 0+ h (x) = limx → 0+ (x) = 0

因此,LHL = RHL = h (k)。

因此,函数 h 在 x = 0 处连续。

f (k) = k/k = 1

h (k) = k

limx → k h (x) = limx → k (x) = k

因此,limx → k h (x) = h (k)。

因此,函数 h 在所有大于 0 的实数上连续。

所以,函数 h 对于所有实数都连续。

由于 g 和 h 都是连续函数。因此,goh 也是连续函数。

因此,f 是一个连续函数。

34. 求 f(x) = |x| - |x + 1| 定义的函数的所有的不连续点。

解决方案

设 g 和 h 定义为两个函数

g (x) = |x + 1| 且 h (x) = |x|。

假设这两个函数对于所有实数都定义良好,我们可以将给定的函数 f 写成 g 和 h 的组合,即 f = h - g。

如果 g 和 h 都连续,则 h - g 也连续,即 f 也连续。

g (x) = |x + 1|

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 0

如果 k < -1

g (k) = -(k + 1)

limx → k g (x) = limx → k (-(x + 1)) = -(k + 1)

因此,limx → k g (x) = g (k)。

因此,函数 g 在所有小于 0 的实数上连续。

如果 k = -1

g (k) = g (-1) = -1 + 1 = 0

左极限 (LHL) = limx → -1- g (x) = limx → -1- (-x - 1) = 1 - 1 = 0

右极限 (RHL) = limx → -1+ g (x) = limx → -1+ (x + 1) = -1 + 1 = 0

因此,LHL = RHL = g (k)。

因此,函数 g 在 x = 0 处连续。

如果 k > -1

g (k) = k + 1

limx → k g (x) = limx → k (x + 1) = k + 1

因此,limx → k g (x) = g (k)。

因此,函数 g 在所有大于 0 的实数上连续。

所以,函数 g 对于所有实数都连续。

现在,h (x) = |x|

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

如果 k < 0

f (k) = -k/k = -1

h (k) = -k

limx → k h (x) = limx → k (-x) = -k

因此,limx → k h (x) = h (k)。

因此,函数 h 在所有小于 0 的实数上连续。

f (k) = f (0) = 0

h (k) = h (0) = 0

左极限 (LHL) = limx → 0- h (x) = limx → 0- (-x) = 0

右极限 (RHL) = limx → 0+ h (x) = limx → 0+ (x) = 0

因此,LHL = RHL = h (k)。

因此,函数 h 在 x = 0 处连续。

f (k) = k/k = 1

h (k) = k

limx → k h (x) = limx → k (x) = k

因此,limx → k h (x) = h (k)。

因此,函数 h 在所有大于 0 的实数上连续。

所以,函数 h 对于所有实数都连续。

由于 g 和 h 都是连续函数。因此,h - g 也是连续函数。

因此,f 是一个连续函数。

练习 5.2

求下列函数的导数(相对于 x)在练习 1 到 8 中。

1. sin (x2 + 5)

解决方案

令 y = sin (x2 + 5)

对两边关于 x 求导

dy/dx = d/dx [sin (x2 + 5)]

dy/dx = (cos (x2 + 5)) d/dx (x2 + 5)

dy/dx = (cos (x2 + 5)) [d/dx (x2) + d/dx (5)]

dy/dx = (cos (x2 + 5)) [2x + 0]

dy/dx = 2x cos (x2 + 5)

2. cos (sin x)

解决方案

令 y = cos (sin x)

对两边关于 x 求导

dy/dx = d/dx [cos (sin x)]

dy/dx = (-sin (sin x)) d/dx (sin x)

dy/dx = (-sin (sin x)) (cos x)

dy/dx = -sin (sin x) cos x

3. sin (ax + b)

解决方案

令 y = sin (ax + b)

对两边关于 x 求导

dy/dx = d/dx [sin (ax + b)]

dy/dx = (cos (ax + b)) d/dx (ax + b)

dy/dx = (cos (ax + b)) [a d/dx (x) + d/dx (b)]

dy/dx = (cos (ax + b)) [a + 0]

dy/dx = a cos (ax + b)

4. sec (tan (√x))

解决方案

令 y = sec (tan (√x))

对两边关于 x 求导

dy/dx = d/dx [sec (tan (√x))]

dy/dx = [sec (tan (√x) tan (tan (√x))] d/dx (tan (√x))

dy/dx = [sec (tan (√x) tan (tan (√x)) sec2 (√x)] d/dx (√x)

dy/dx = [sec (tan (√x) tan (tan (√x)) sec2 (√x)] (1/2√x)

dy/dx = 1/2√x [sec (tan (√x) tan (tan (√x)) sec2 (√x)]

5. sin (ax + b)/cos (cx + d)

解决方案

令 y = sin (ax + b)/cos (cx + d)

对两边关于 x 求导

dy/dx = d/dx [sin (ax + b)/cos (cx + d)]

dy/dx = [cos (cx + d) d/dx (sin (ax + b)) - sin (ax + b) d/dx (cos (cx + d))]/[cos2 (cx + d)]

dy/dx = [cos (cx + d) cos (ax + b) d/dx (ax + b) + sin (ax + b) sin (cx + d) d/dx (cx + d)]/[cos2 (cx + d)]

dy/dx = [cos (cx + d) cos (ax + b) (a dx/dx + 0) + sin (ax + b) sin (cx + d) (c dx/dx + 0)]/[cos2 (cx + d)]

dy/dx = [a cos (cx + d) cos (ax + b) + c sin (ax + b) sin (cx + d)]/[cos2 (cx + d)]

6. cos x3. sin2(x5)

解决方案

令 y = cos x3. sin2 (x5)

对两边关于 x 求导

dy/dx = d/dx [cos x3. sin2 (x5)]

dy/dx = (cos x3) d/dx (sin2 (x5)) + sin2 (x5) d/dx (cos x3)

dy/dx = (cos x3) (2 sin (x5)) d/dx (sin (x5)) + sin2 (x5) (-sin x3) d/dx (x3)

dy/dx = (2 sin x5 cos x3 cos x5) d/dx (x5) - (sin2 (x5) sin x3) d/dx (x3)

dy/dx = (2 sin x5 cos x3 cos x5) (5x4) - (sin2 (x5) sin x3) (3x2)

dy/dx = 10x4 sin x5 cos x3 cos x5 - 3x2 sin2 (x5) sin x3

7. 2√cot (x2)

解决方案

令 y = 2√cot (x2)

对两边关于 x 求导

dy/dx = d/dx [2√cot (x2)]

dy/dx = 2 d/dx [√cot (x2)]

dy/dx = 2 (1/2 √cot x2) d/dx [cot (x2)]

dy/dx = (1/√cot x2) (-cosec2 (x2)) d/dx (x2)

dy/dx = (1/√cot x2) (-cosec2 (x2)) (2x)

dy/dx = -2x cosec2 (x2)/√cot x2

8. cos (√x)

解决方案

令 y = cos (√x)

对两边关于 x 求导

dy/dx = d/dx [cos (√x)]

dy/dx = (-sin (√x)) d/dx (√x)

dy/dx = (-sin (√x)) (1/2√x)

dy/dx = (-sin √x)/2√x

9. 证明函数 f(x) = |x - 1|, x R 在 x = 1 处不可导。

解决方案

在 x = 1 处

左导数 (LHD) = limh → 0 [f (1 - h) - f (1)]/(-h) = limh → 0 [|1 - h - 1| - |1 - 1|]/(-h) = limh → 0 (h - 0)/(-h) = -1

右导数 (RHD) = limh → 0 [f (1 + h) - f (1)]/h = limh → 0 [|1 + h - 1| - |1 - 1|]/h = limh → 0 (h - 0)/h = 1

因此,LHD ≠ RHD。

所以,函数 f (x) = |x - 1|, x R 在 x = 1 处不可导。

10. 证明由 f (x) = [x] 定义的最大整数函数,0 < x < 3,在 x = 1 和 x = 2 处不可导。

解决方案

在 x = 1 处

左导数 (LHD) = limh → 0 [f (1 - h) - f (1)]/(-h) = limh → 0 [[1 - h] - [1]]/(-h) = limh → 0 (0 - 1)/(-h) = 未定义

右导数 (RHD) = limh → 0 [f (1 + h) - f (1)]/h = limh → 0 [[1 + h] - [1]]/h = limh → 0 (1 - 1)/h = 0

因此,LHD ≠ RHD。

因此,由 f (x) = [x] 定义的最大整数函数,0 < x < 3,在 x = 1 处不可导。

在 x = 2 处

左导数 (LHD) = limh → 0 [f (1 - h) - f (1)]/(-h) = limh → 0 [[2 - h] - [2]]/(-h) = limh → 0 (1 - 2)/(-h) = 未定义

右导数 (RHD) = limh → 0 [f (1 + h) - f (1)]/h = limh → 0 [[2 + h] - [2]]/h = limh → 0 (2 - 2)/h = 0

因此,LHD ≠ RHD。

因此,由 f (x) = [x] 定义的最大整数函数,0 < x < 3,在 x = 2 处不可导。

因此,证明了由 f (x) = [x] 定义的最大整数函数,0 < x < 3,在 x = 1 和 x = 2 处不可导。

练习 5.3

求下列的 dy/dx

1. 2x + 3y = sin x

解决方案

2x + 3y = sin x

对两边关于 x 求导

d/dx (2x) + d/dx (3y) = d/dx (sin x)

2 d/dx (x) + 3 dy/dx = cos x

2 + 3 dy/dx = cos x

3 dy/dx = cos x - 2

dy/dx = (cos x - 2)/3

2. 2x + 3y = sin y

解决方案

2x + 3y = sin y

对两边关于 x 求导

d/dx (2x) + d/dx (3y) = d/dx (sin y)

2 d/dx (x) + 3 dy/dx = cos y dy/dx

2 = cos y dy/dx - 3 dy/dx

2 = (cos y - 3) dy/dx

dy/dx = 2/(cos y - 3)

3. ax + by2 = cos y

解决方案

ax + by2 = cos y

对两边关于 x 求导

d/dx (ax) + d/dx (by2) = d/dx (cos y)

a d/dx (x) + b d/dy (y2) = -sin y dy/dx

a + 2by dy/dx = -sin y dy/dx

2by dy/dx + sin y dy/dx = -a

(2by + sin y) dy/dx = -a

dy/dx = -a/(2by + sin y)x

4. xy + y2 = tan x + y

解决方案

xy + y2 = tan x + y

对两边关于 x 求导

d/dx (xy) + d/dx (y2) = d/dx (tan x) + dy/dx

x dy/dx + y d/dx (x) + 2y dy/dx = sec2 x + dy/dx

x dy/dx + y + 2y dy/dx = sec2 x + dy/dx

x dy/dx + 2y dy/dx - dy/dx = sec2 x - y

(x + 2y - 1) dy/dx = sec2 x - y

dy/dx = (sec2 x - y)/(x + 2y - 1)

5. x2 + xy + y2 = 100

解决方案

x2 + xy + y2 = 100

对两边关于 x 求导

d/dx (x2) + d/dx (xy) + d/dx (y2) = d/dx (100)

2x d/dx (x) + x dy/dx + y d/dx (x) + 2y dy/dx = 0

2x + x dy/dx + y + 2y dy/dx = 0

(x + 2y) dy/dx = -(2x + y)

dy/dx = -(2x + y)/(x + 2y)

6. x3 + x2y + xy2 + y3 = 81

解决方案

x3 + x2y + xy2 + y3 = 81

对两边关于 x 求导

d/dx (x3) + d/dx (x2y) + d/dx (xy2) + d/dx (y3) = d/dx (81)

3x2 d/dx (x) + x2 dy/dx + y d/dx (x2) + 3y2 dy/dx = 0

3x2 + x2 dy/dx + 2xy + 3y2 dy/dx = 0

(x2 + 3y2) dy/dx = -(3x2 + 2xy)

dy/dx = -(3x2 + 2xy)/(x2 + 3y2)

7. sin2 y + cos xy = k

解决方案

sin2 y + cos xy = k

对两边关于 x 求导

d/dx (sin2 y) + d/dx (cos xy) = d/dx (k)

2 sin y d/dx (sin y) - sin xy d/dx (xy) = 0

2 sin y cos y dy/dx - sin xy [x dy/dx + y d/dx (x)] = 0

2 sin y cos y dy/dx - sin xy (x dy/dx + y) = 0

2 sin y cos y dy/dx = (x dy/dx + y) sin xy

sin 2y dy/dx = (x sin xy) dy/dx + y sin xy

(sin 2y - x sin xy) dy/dx = y sin xy

dy/dx = (y sin xy)/(sin 2y - x sin xy)

8. sin2 x + cos2 y = 1

解决方案

sin2 x + cos2 y = 1

对两边关于 x 求导

d/dx (sin2 x) + d/dx (cos2 y) = d/dx (1)

2 sin x d/dx (sin x) + 2 cos y d/dx (cos y) = 0

2 sin x cos x + 2 cos y (-sin y) dy/dx = 0

2 sin x cos x = 2 sin y cos y dy/dx

sin 2x = sin 2y dy/dx

dy/dx = sin 2x/sin 2y

9. y = sin-1 (2x/(1 + x2))

解决方案

y = sin-1 (2x/(1 + x2))

令 x = tan θ

θ = tan-1 x

现在,y = sin-1 (2 tan θ/(1 + tan2 θ))

y = sin-1 (sin 2θ)

y = 2θ

y = 2 tan-1 x

对两边关于 x 求导

dy/dx = d/dx (2 tan-1 x)

dy/dx = 2 d/dx (tan-1 x)

dy/dx = 2/(1 + x2)

10. y = tan-1 ((3x - x3)/(1 - 3x2)), -1/√3 < x < 1/√3

解决方案

y = tan-1 ((3x - x3)/(1 - 3x2))

令 x = tan θ

θ = tan-1 x

现在,y = tan-1 ((3 tan θ - tan3 θ)/(1 - 3 tan2 θ))

y = tan-1 (tan 3θ)

y = 3θ

y = 3 tan-1 x

对两边关于 x 求导

dy/dx = d/dx (3 tan-1 x)

dy/dx = 3 d/dx (tan-1 x)

dy/dx = 3/(1 + x2)

11. y = cos-1 ((1 - x2)/(1 + x2)), 0 < x < 1

解决方案

y = cos-1 ((1 - x2)/(1 + x2))

令 x = tan θ

θ = tan-1 x

现在,y = cos-1 ((1 - tan2 θ)/(1 + tan2 θ))

y = cos-1 (cos 2θ)

y = 2θ

y = tan-1 x

对两边关于 x 求导

dy/dx = d/dx (3 tan-1 x)

dy/dx = 1/(1 + x2)

12. y = sin-1 ((1 - x2)/(1 + x2)), 0 < x < 1

解决方案

y = sin-1 ((1 - x2)/(1 + x2))

令 x = tan θ

θ = tan-1 x

现在,y = sin-1 ((1 - tan2 θ)/(1 + tan2 θ))

y = sin-1 (cos 2θ)

y = sin-1 (sin (π/2 - 2θ))

y = π/2 - 2θ

y = π/2 - 2 tan-1 x

对两边关于 x 求导

dy/dx = d/dx (π/2) - d/dx (2 tan-1 x)

dy/dx = 0 - 2 d/dx (2 tan-1 x)

dy/dx = 0 - 2/(1 + x2)

dy/dx = -2/(1 + x+)

13. y = cos-1 (2x/(1 + x2))

解决方案

y = cos-1 (2x/(1 + x2))

令 x = tan θ

θ = tan-1 x

现在,y = cos-1 (2 tan θ/(1 + tan2 θ))

y = cos-1 (sin 2θ)

y = cos-1 (cos (π/2 - 2θ))

y = π/2 - 2θ

y = π/2 - 2 tan-1 x

对两边关于 x 求导

dy/dx = d/dx (π/2) - d/dx (2 tan-1 x)

dy/dx = 0 - 2 d/dx (2 tan-1 x)

dy/dx = 0 - 2/(1 + x2)

dy/dx = -2/(1 + x2)

14. y = sin-1 (2x√(1 - x2)), -1/√2 < x < 1/√2

解决方案

y = sin-1 (2x√(1 - x2))

令 x = sin θ

θ = sin-1 x

现在,y = sin-1 (2 sin θ√(1 - sin2 θ))

y = sin-1 (2 sin θ√(cos2 θ))

y = sin-1 (2 sin θ cos θ)

y = sin-1 (sin 2θ)

y = 2θ

y = 2 sin-1 x

对两边关于 x 求导

dy/dx = d/dx (2 sin-1 x)

dy/dx = 2 d/dx (sin= x)

dy/dx = 2/√(1 - x2)

15. y = sec-1 (1/(2x2 - 1))

解决方案

y = sec-1 (1/(2x2 - 1))

令 x = cos θ

θ = cos-1 x

现在,y = sec-1 (1/(2 cos2 θ - 1))

y = sec-1 (1/cos 2θ)

y = sec-1 (sec 2θ)

y = 2θ

y = 2 cos-1 x

对两边关于 x 求导

dy/dx = d/dx (2 cos-1 x)

dy/dx = 2 d/dx (cos-1 x)

dy/dx = -2/√(1 - x2)

练习 5.4

分别对 x 求下列函数的导数

1. ex/sin x

解决方案

令 y = ex/sin x

对两边关于 x 求导

dy/dx = d/dx (ex/sin x)

dy/dx = [ex d/dx (sin x) - sin x d/dx (ex)]/sin2 x

dy/dx = (ex cos x - ex sin x)/sin2 x

dy/dx = ex (cos x - sin x)/sin2 x

2. esin-1 x

解决方案

令 y = esin-1 x

对两边关于 x 求导

dy/dx = d/dx (esin-1 x)

dy/dx = esin-1 x d/dx (sin-1 x)

dy/dx = esin-1 x/√(1 - x2)

3. ex3

解决方案

令 y = ex3

对两边关于 x 求导

dy/dx = d/dx (ex3)

dy/dx = ex3 d/dx (x3)

dy/dx = ex3 (3x2)

dy/dx = 3x2ex3

4. sin (tan-1 e-x)

解决方案

令 y = sin (tan-1 e-x)

对两边关于 x 求导

dy/dx = d/dx (sin (tan-1 e-x))

dy/dx = cos (tan-1 e-x) d/dx (tan-1 e-x)

dy/dx = cos (tan-1 e-x)/(1 + (e-x)2) d/dx (e-x)

dy/dx = -ex cos (tan-1 e-x)/(1 + e-2x)

5. log (cos ex)

解决方案

令 y = log (cos ex)

对两边关于 x 求导

dy/dx = d/dx (log (cos ex))

dy/dx = (1/cos ex) d/dx (cos ex)

dy/dx = (1/cos ex) (-sin ex) d/dx (ex)

dy/dx = -ex sin ex/cos ex

dy/dx = -ex tan ex

6. ex + ex2 + … + ex5

解决方案

令 y = ex + ex2 + ex3 + ex4 + ex5

对两边关于 x 求导

dy/dx = d/dx (ex + ex2 + ex3 + ex4 + ex5)

dy/dx = d/dx (ex) + d/dx (ex2) + d/dx (ex3) + d/dx (ex4) + d/dx (ex5)

dy/dx = ex + ex2 d/dx (x2) + ex3 + d/dx (x3) + ex4 d/dx (x4) + ex5 d/dx (x5)

dy/dx = ex + 2xex2 + 3x2ex3 + 4x3ex4 + 5x4ex5

7. √(e√x), x > 0

解决方案

令 y = √(e√x)

对两边关于 x 求导

dy/dx = d/dx (√(e√x))

dy/dx = (1/2√(e√x)) d/dx (e√x)

dy/dx = e√x/2√(e√x) d/dx (√x)

dy/dx = (e√x/2√(e√x)) (1/2√x)

dy/dx √(e√x)/4√x

8. log (log x), x > 1

解决方案

令 y = log (log x)

对两边关于 x 求导

dy/dx = d/dx (log (log x))

dy/dx = (1/log x) d/dx (log x)

dy/dx = (1/log x) (1/x)

dy/dx = 1/(x log x)

9. cos x/log x, x > 0

解决方案

令 y = cos x/log x

对两边关于 x 求导

dy/dx = d/dx (cos x/log x)

dy/dx = [log x d/dx (cos x) - cos x d/dx (log x)]/(log x)2

dy/dx = [-sin x log x - cos x/x]/(log x)2

dy/dx = (-x sin x log x - cos x)/x (log x)2

dy/dx = -(x sin x log x + cos x)/x (log x)2

10. cos (log x + ex)

解决方案

令 y = cos (log x + ex)

对两边关于 x 求导

dy/dx = d/dx (cos (log x + ex))

dy/dx = -sin (log x + ex) d/dx (log x + ex)

dy/dx = -sin (log x + ex) [d/dx (log x) + d/dx (ex)]

dy/dx = -sin (log x + ex) [1/x + ex]

dy/dx = (1/x + ex) (-sin (log x + ex))

练习 5.5

求练习 1 到 11 中函数的导数(相对于 x)。

1. cos x .cos 2x .cos 3x

解决方案

令 y = cos x .cos 2x .cos 3x

两边取对数

log y = log (cos x) + log (cos 2x) + log (cos 3x)

对两边关于 x 求导

d/dx (log y) = d/dx [log (cos x) + log (cos 2x) + log (cos 3x)]

(1/y) dy/dx = d/dx (log (cos x)) + d/dx (log (cos 2x)) + d/dx (log (cos 3x))

dy/dx = y [(1/cos x) d/dx (cos x) + (1/cos 2x) d/dx (cos 2x) + (1/cos 3x) d/dx (cos 3x)]

dy/dx = y [(-sin x/cos x) d/dx (x) + (-sin 2x/cos 2x) 2 d/dx (x) + (-sin 3x/cos 3x) 3 d/dx (x)]

dy/dx = y [-sin x/cos x - 2 sin 2x/cos 2x - 3 sin 3x/cos 3x]

dy/dx = -y [tan x + 2 tan 2x + 3 tan 3x]

dy/dx = -cos x .cos 2x .cos 3x [tan x + 2 tan 2x + 3 tan 3x]

2. √[(x - 1) (x - 2)/(x - 3)(x - 4)(x - 5)]

解决方案

令 y = √[(x - 1) (x - 2)/(x - 3)(x - 4)(x - 5)]

两边取对数

log y = log [√[(x - 1) (x - 2)/(x - 3)(x - 4)(x - 5)]]

log y = 1/2 × [log (x - 1) + log (x - 2) - log (x - 3) - log (x - 4) - log (x - 5)]

对两边关于 x 求导

d/dx (log y) = 1/2 × d/dx [log (x - 1) + log (x - 2) - log (x - 3) - log (x - 4) - log (x - 5)]

(1/y) dy/dx = 1/2 × [d/dx (log (x - 1)) + d/dx (log (x - 2)) - d/dx (log (x - 3)) - d/dx (log (x - 4)) - d/dx (log (x - 5))]

dy/dx = y/2 [(1/(x - 1)) d/dx (x - 1) + (1/(x - 2)) d/dx (x - 2) - (1/(x - 3)) d/dx (x - 3) - (1/(x - 4)) d/dx (x - 4) - (1/(x - 5)) d/dx (x - 5)]

dy/dx = y/2 [1/(x - 1) + 1/(x - 2) - 1/(x - 3) - (1/(x - 4)) - 1/(x - 5)]

dy/dx = 1/2 × √[(x - 1) (x - 2)/(x - 3)(x - 4)(x - 5)] [1/(x - 1) + 1/(x - 2) - 1/(x - 3) - (1/(x - 4)) - 1/(x - 5)]

3. (log x)cos x

解决方案

令 y = (log x)cos x

两边取对数

log y = log ((log x)cos x)

log y = cos x .log (log x)

对两边关于 x 求导

d/dx (log y) = d/dx (cos x .log (log x))

(1/y) dy/dx = cos x d/dx (log (log x)) + log (log x) d/dx (cos x)

dy/dx = y [cos x (1/log x) d/dx (log x) + log (log x) (-sin x)]

dy/dx = y [(1/x) cos x/log x - sin x .log (log x)]

dy/dx = y [cos x/x log x - sin x .log (log x)]

dy/dx = (log x)cos x [cos x/x log x - sin x .log (log x)]

4. xx - 2sin x

解决方案

令 y = xx - 2sin x

令 xx = u 且 2sin x = v

所以,y = u - v

dy/dx = du/dx - dv/dx

现在,u = xx

两边取对数

log u = log (xx)

log u = x log x

对两边关于 x 求导

d/dx (log u) = d/dx (x log x)

(1/u) du/dx = x d/dx (log x) + log x d/dx (x)

du/dx = u [x (1/x) + log x]

du/dx = xx [1 + log x]

并且

v = 2sin x

两边取对数

log v = log (2sin x)

log v = sin x .log 2

对两边关于 x 求导

d/dx (log v) = d/dx (sin x .log 2)

(1/v) dv/dx = sin x d/dx (log 2) + log 2 d/dx (sin x)

dv/dx = v cos x .log 2

dv/dx = 2sin x cos x .log 2

因此,

dy/dx = du/dx - dv/dx

dy/dx = xx [1 + log x] - 2sin x cos x .log 2

5. (x + 3)2 .(x + 4)3 .(x + 5)4

解决方案

令 y = (x + 3)2 .(x + 4)3 .(x + 5)4

两边取对数

log y = log (x + 3)2 + log (x + 4)3 + log (x + 5)4

log y = 2 log (x + 3) + 3 log (x + 4) + 4 log (x + 5)

对两边关于 x 求导

d/dx (log y) = 2 d/dx (log (x + 3)) + 3 d/dx (log (x + 4)) + 4 d/dx (log (x + 5))

(1/y) dy/dx = 2/(x + 3) + 3/(x + 4) + 4/(x + 5)

dy/dx = y [2(x + 4) (x + 5) + 3(x + 3) (x + 5) + 4(x + 3) (x + 4)]/(x + 3)(x + 4)(x + 5)

dy/dx = y [2 (x2 + 4x + 5x + 20) + 3 (x2 + 3x + 5x + 15) + 4 (x2 + 3x + 4x + 12)]/(x + 3)(x + 4)(x + 5)

dy/dx = y [2 (x2 + 9x + 20) + 3 (x2 + 8x + 15) + 4 (x2 + 7x + 12)]/(x + 3)(x + 4)(x + 5)

dy/dx = y [2x2 + 18x + 40 + 3x2 + 24x + 45 + 4x2 + 28x + 48]/(x + 3)(x + 4)(x + 5)

dy/dx = y [9x2 + 60x + 133]/(x + 3)(x + 4)(x + 5)

dy/dx = (x + 3)2 .(x + 4)3 .(x + 5)4 [9x2 + 60x + 133]/(x + 3)(x + 4)(x + 5)

dy/dx = (x + 3) .(x + 4)2 .(x + 5)3 [9x2 + 60x + 133]

6. (x + 1/x)x + x(1 + 1/x)

解决方案

令 y = (x + 1/x)x + x(1 + 1/x)

令 u = (x + 1/x)x 且 v = x(1 + 1/x)

所以,y = u + v

dy/dx = du/dx + dv/dx

现在,u = (x + 1/x)x

两边取对数

log u = log (x + 1/x)x

log u = x log (x + 1/x)

对两边关于 x 求导

d/dx (log u) = d/dx (x log (x + 1/x))

(1/u) du/dx = x d/dx (log (x + 1/x)) + log (x + 1/x) d/dx (x)

du/dx = u [x/(x + 1/x) d/dx (x + 1/x) + log (x + 1/x)]

du/dx = u [x/(x + 1/x) (d/dx (x) + d/dx (1/x)) + log (x + 1/x)]

du/dx = u [x/(x + 1/x) (1 - 1/x2) + log (x + 1/x)]

du/dx = u [x2/(x2 + 1) (x2 - 1)/x2 + log (x + 1/x)]

du/dx = (x + 1/x)x [(x2 - 1)/(x2 + 1) + log (x + 1/x)]

并且

v = x(1/x + x)

两边取对数

log v = log (x(1 + 1/x))

log v = (1 + 1/x) log x

对两边关于 x 求导

d/dx (log v) = d/dx ((1 + 1/x) log x)

(1/v) dv/dx = (1 + 1/x) d/dx (log x) + log x d/dx (1 + 1/x)

dv/dx = v [(1 + 1/x) (1/x) + log x (-1/x2)]

dv/dx = v [(x + 1)/x2 - log x/x2]

dv/dx = x(1 + 1/x) [(x + 1) - log x]/x2

因此,

dy/dx = du/dx + dv/dx

dy/dx = (x + 1/x)x [(x2 - 1)/(x2 + 1) + log (x + 1/x)] + x(1 + 1/x) [(x + 1) - log x]/x2

7. (log x)x + xlog x

解决方案

令 y = (log x)x + xlog x

令 u = (log x)x 且 v = xlog x

所以,y = u + v

dy/dx = du/dx + dv/dx

现在,u = (log x)x

两边取对数

log u = log (log x)x

log u = x log (log x)

对两边关于 x 求导

d/dx (log u) = d/dx (x log (log x))

(1/u) du/dx = x d/dx (log (log x)) + log (log x) d/dx (x)

(1/u) du/dx = (x/log x) d/dx (log x) + log (log x)

(1/u) du/dx = (x/log x) (1/x) + log (log x)

(1/u) du/dx = (1/log x) + log (log x)

du/dx = u [1/log x + log (log x)]

du/dx = (log x)x [1 + log x .log (log x)]/log x

du/dx = (log x)x - 1 (1 + log x .log (log x))

并且

v = xlog x

两边取对数

log v = log (xlog x)

log v = log x. log x

对两边关于 x 求导

d/dx (log v) = d/dx (log x .log x)

(1/v) dv/dx = log x d/dx (log x) + log x d/dx (log x)

(1/v) dv/dx = (log x/x + (log x)/x

dv/dx = v [log x + log x]/x

dv/dx = xlog x [2 log x]/x

dv/dx = xlog x - 1 (2 log x)

因此,

dy/dx = du/dx + dv/dx

dy/dx = (log x)x - 1 (log x .log (log x)) + xlog x - 1 (2 log x)

8. (sin x)x + sin-1 √x

解决方案

令 y = (sin x)x + sin-1 √x

令 u = (sin x)x 且 v = sin-1 √x

所以,y = u + v

dy/dx = du/dx + dv/dx

现在,

u = (sin x)x

两边取对数

log u = log (sin x)x

log u = x log (sin x)

对两边关于 x 求导

d/dx (log u) = d/dx (x log (sin x))

(1/u) du/dx = x d/dx (log (sin x)) + log (sin x) d/dx (x)

(1/u) du/dx = (x/sin x) d/dx (sin x) + log (sin x)

(1/u) du/dx = (x/sin x) (cos x) + log (sin x)

du/dx = u [x cot x + log (sin x)]

du/dx = (sin x)x (x cot x + log (sin x))

并且

v = sin-1 √x

两边取对数

log v = log (sin-1 √x)

对两边关于 x 求导

d/dx (log v) = d/dx (log (sin-1 √x))

(1/v) dv/dx = 1/(sin-1 √x) d\dx (sin-1 √x)

(1/v) dv/dx = (1/sin-1 √x) (1/√(1 - x)) d/dx (√x)

(1/v) dv/dx = (1/sin-1 √x) (1/√(1 - x)) (1/2√x)

dv/dx = v [(1/sin-1 √x) (1/√(1 - x)) (1/2√x)]

dv/dx = (sin-1 √x) [(1/sin-1 √x) (1/√(1 - x)) (1/2√x)]

dv/dx = (1/√(1 - x)) (1/2√x)

dv/dx = (1/2√(x - x2))

因此,

dy/dx = du/dx + dv/dx

dy/dx = (sin x)x (x cot x + log (sin x)) + (1/2√(x - x2))

9. xsin x + (sin x)cos x

解决方案

令 y = xsin x + (sin x)cos x

令 u = xsin x 且 v = (sin x)cos x

所以,y = u + v

dy/dx = du/dx + dv/dx

现在,u = xsin x

两边取对数

log u = log (xsinx)

log u = sin x .log x

对两边关于 x 求导

d/dx (log u) = d/dx (sin x .log x)

(1/u) du/dx = sin x d/dx (log x) + log x d/dx (sin x)

(1/u) du/dx = sin x/x + log x .cos x

du/dx = u [sin x/x + log x .cos x]

du/dx = xsin x [sin x + x log x .cos x]/x

du/dx = xsin x - 1 (sin x + x log x .cos x)

并且

v = (sin x)cos x

两边取对数

log v = log (sin x)cos x

log v = cos x log (sin x)

对两边关于 x 求导

d/dx (log v) = d/dx (cos x log (sin x))

(1/v) dv/dx = cos x d/dx (log (sin x)) + log (sin x) d/dx (cos x)

(1/v) dv/dx = (cos x/sin x) d/dx (sin x) + log (sin x) .(-sin x)

(1/v) dv/dx = (cot x) (cos x) - sin x .log (sin x)

dv/dx = v [(cot x) (cos x) - sin x .log (sin x)

dv/dx = (sin x)cos x [(cot x) (cos x) - sin x .log (sin x)

因此,

dy/dx = du/dx + dv/dx

dy/dx = xsin x - 1 (sin x + x log x .cos x) + (sin x)cos x [(cot x) (cos x) - sin x .log (sin x)

10. xx cos x + (x2 + 1)/(x2 - 1)

解决方案

令 y = xx cos x + (x2 + 1)/(x2 - 1)

令 u = xx cos x 且 v = (x2 + 1)/(x2 - 1)

所以,y = u + v

dy/dx = du/dx + dv/dx

现在,u = xx cos x

两边取对数

log u = log (xx cos x)

log u = x cos x .log x

对两边关于 x 求导

d/dx (log u) = d/dx (x cos x .log x)

(1/u) du/dx = x cos x d/dx (log x) + log x d/dx (x cos x)

(1/u) du/dx = (x cos x)/x + log x (x d/dx (cos x) + cos x d/dx (x))

(1/u) du/dx = cos x + log x (-x sin x + cos x )

(1/u) du/dx = cos x - x sin x .log x + cos x .log x

du/dx = u [cos x - x sin x .log x + cos x .log x]

du/dx = xx cos x [cos x - x sin x .log x + cos x .log x]

并且

v = (x2 + 1)/(x2 - 1)

两边取对数

log v = log ((x2 + 1)/(x2 - 1))

log v = log (x2 + 1) - log (x2 - 1)

对两边关于 x 求导

d/dx (log v) = d/dx [log (x2 + 1) - log (x2 - 1)]

(1/v) dv/dx = (1/(x2 + 1)) d/dx (x2 + 1) -(1/(x2 - 1)) d/dx (x2 - 1)

(1/v) dv/dx = 2x/(x2 + 1) - 2x/(x2 - 1)

dv/dx = v [2x/(x2 + 1) - 2x/(x2 - 1)]

dv/dx = (x2 + 1)/(x2 - 1) [2x/(x2 + 1) - 2x/(x2 - 1)]

dv/dx = (x2 + 1)/(x2 - 1) [2x (x2 - 1) - 2x (x2 + 1)]/(x2 + 1)(x2 - 1)

dv/dx = (x2 + 1)/(x2 - 1) [2x3 - 2x - 2x3 - 2x]/(x2 + 1)(x2 - 1)

dv/dx = (x2 + 1)/(x2 - 1) [-4x]/(x2 + 1)(x2 - 1)

dv/dx = -4x/(x2 - 1)(x2 - 1)

dv/dx = -4x/(x4 - 2x2 + 1)

因此,

dy/dx = du/dx + dv/dx

dy/dx = xx cos x [cos x - x sin x .log x + cos x .log x] - 4x/(x4 - 2x2 + 1)

11. (x cos x)x + (x sin x)1/x

解决方案

设 y = (x cos x)x + (x sin x)1/x

设 u = (x cos x)x 且 v = (x sin x)1/x

所以,y = u + v

dy/dx = du/dx + dv/dx

现在,u = (x cos x)x

两边取对数

log u = log (x cos x)x

log u = x log (x cos x)

对两边关于 x 求导

d/dx (log u) = d/dx (x log (x cos x))

(1/u) du/dx = x d/dx (log (x cos x)) + log (x cos x) d/dx (x)

(1/u) du/dx = (x/(x cos x)) d/dx (x cos x) + log (x cos x)

(1/u) du/dx = (1/cos x) (x d/dx (cos x) + cos x d/dx (x)) + log (x cos x)

(1/u) du/dx = (1/cos x) (-x sin x + cos x) + log (x cos x)

(1/u) du/dx = -x tan x + 1 + log (x cos x)

du/dx = u [1 - x tan x + log (x cos x)]

du/dx = (x cos x)x [1 - x tan x + log (x cos x)]

并且

v = (x sin x)1/x

两边取对数

log v = log (x sin x)1/x

log v = (1/x) log (x sin x)

对两边关于 x 求导

d/dx (log v) = d/dx (x-1 log (x sin x))

(1/v) dv/dx = (x-1)/(x sin x) d/dx (x sin x) + log (x sin x) d/dx (x-1)

(1/v) dv/dx = (1/(x2 sin x)) d/dx (x sin x) + log (x sin x) d/dx (x-1)

(1/v) dv/dx = (1/(x2 sin x)) (x d/dx (sin x) + sin x d/dx (x)) + log (x sin x) (-x-2)

(1/v) dv/dx = (1/(x2 sin x)) (x cos x + sin x) - x-2 log (x sin x)

(1/v) dv/dx = (x cos x + sin x)/(x2 sin x) - (log (x sin x))/x2

(1/v) dv/dx = (x cot x + 1)/x2 - (log (x sin x))/x2

(1/v) dv/dx = (x cot x + 1 - log (x sin x))/x2

(1/v) dv/dx = v [(x cot x + 1 - log (x sin x))/x2]

(1/v) dv/dx = (x sin x)1/x [(x cot x + 1 - log (x sin x))/x2]

因此,

dy/dx = du/dx + dv/dx

dy/dx = (x cos x)x [1 - x tan x + log (x cos x)] + (x sin x)1/x [(x cot x + 1 - log (x sin x))/x2]

求12至15题所给函数的 dy/dx

12. xy + yx = 1

解决方案

设 y = xy + yx

设 u = xy 且 v = yx

所以,y = u + v

dy/dx = du/dx + dv/dx

0 = du/dx + dv/dx

现在,u = xy

两边取对数

log u = log xy

log u = y log x

对两边关于 x 求导

d/dx (log u) = d/dx (y log x)

(1/u) du/dx = y d/dx (log x) + log x dy/dx

(1/u) du/dx = y/x + log x .dy/dx

du/dx = u [y/x + log x .dy/dx]

du/dx = xy [y/x + log x .dy/dx]

并且

v = yx

两边取对数

log v = log yx

log v = x log y

对两边关于 x 求导

d/dx (log v) = d/dx (x log y)

(1/v) dv/dx = x d/dx (log y) + log y d/dx (x)

(1/v) dv/dx = (x/y) dy/dx + log y

dv/dx = v [(x/y) dy/dx + log y]

dv/dx = yx [(x/y) dy/dx + log y]

因此,

0 = du/dx + dv/dx

0 = xy [y/x + log x .dy/dx] + yx [(x/y) dy/dx + log y]

0 = (xy - 1) y + xy log x .dy/dx + (yx - 1) x dy/dx + yx log y

0 = (xy - 1) y + yx log y + (xy log x + (yx - 1) x) dy/dx

0 - (xy log x + (yx - 1) x) dy/dx = (xy - 1) y + yx log y

dy/dx = -[(xy - 1) y + yx log y]/[xy log x + (yx - 1) x]

13. yx = xy

解决方案

yx = xy

两边取对数

log yx = log xy

x log y = y log x

对两边关于 x 求导

d/dx (x log y) = d/dx (y log x)

x d/dx (log y) + log y d/dx (x) = y d/dx (log x) + log x dy/dx

(x/y) dy/dx + log y = y/x + log x .dy/dx

(x/y) dy/dx - log x .dy/dx = y/x - log y

(x/y - log x) dy/dx = y/x - log y

dy/dx = (y/x - log y)/(x/y - log x)

dy/dx = [(y - x log y)/x]/[(x - y log x)/y]

dy/dx = y(y - x log y)/x(x - y log x)

14. (cos x)y = (cos y)x

解决方案

(cos x)y = (cos y)x

两边取对数

log (cos x)y = log (cos y)x

y log (cos x) = x log (cos y)

对两边关于 x 求导

d/dx (y log (cos x)) = d/dx (x log (cos y))

y d/dx (log (cos x)) + log (cos x) dy/dx = x d/dx (log (cos y) + log (cos y) d/dx (x)

(y/cos x) d/dx (cos x) + log (cos x) .dy/dx = (x/cos y) d/dx (cos y) + log (cos y)

(y/cos x) (-sin x) + log (cos x) .dy/dx = (x/cos y) (-sin y) dy/dx + log (cos y)

(y/cos x) (-sin x) - log (cos y) = (x/cos y) (-sin y) dy/dx - log (cos x) dy/dx

-y tan x - log (cos y) = (-x tan y - log (cos x)) dy/dx

dy/dx = [-y tan x - log (cos y)]/[-x tan y - log (cos x)]

dy/dx = -[y tan x + log (cos y)]/-[x tan y + log (cos x)]

dy/dx = [y tan x + log (cos y)]/[x tan y + log (cos x)]

15. xy = e(x - y)

解决方案

两边取对数

log xy = log e(x - y)

log x + log y = (x - y) log e

log x + log y = (x - y)

对两边关于 x 求导

d/dx (log x) + d/dx (log y) = d/dx (x) - dy/dx

1/x + (1/y) dy/dx = 1 - dy/dx

(1/y) dy/dx + dy/dx = 1 - 1/x

(1/y + 1) dy/dx = (x - 1)/x

((1 + y)/y) dy/dx = (x - 1)/x

dy/dx = [(x - 1)/x]/[(1 + y)/y]

dy/dx = y(x - 1)/x(y + 1)

16. 求函数 f (x) = (1 + x)(1 + x2)(1 + x4)(1 + x8) 的导数,并求 f' (1)。

解决方案

f (x) = (1 + x)(1 + x2)(1 + x4)(1 + x8)

两边取对数

log (f (x)) = log ((1 + x)(1 + x2)(1 + x4)(1 + x8))

log (f (x)) = log (1 + x) + log (1 + x2) + log (1 + x4) + log (1 + x8)

(1/f (x)) f' (x) = d/dx [log (1 + x) + log (1 + x2) + log (1 + x4) + log (1 + x8)]

(1/f (x)) f' (x) = d/dx (log (1 + x)) + d/dx (log (1 + x2)) + d/dx (log (1 + x4)) + d/dx (log (1 + x8))

(1/f (x)) f' (x) = 1/(1 + x) + (1/(1 + x2)) d/dx (x2) + (1/(1 + x4)) d/dx (x4) + (1/(1 + x8)) d/dx (x8)

(1/f (x)) f' (x) = 1/(1 + x) + 2x/(1 + x2) + 4x3/(1 + x4) + 8x7/(1 + x8)

f' (x) = f (x) [1/(1 + x) + 2x/(1 + x2) + 4x3/(1 + x4) + 8x7/(1 + x8)]

f' (x) = (1 + x)(1 + x2)(1 + x4)(1 + x8) [1/(1 + x) + 2x/(1 + x2) + 4x3/(1 + x4) + 8x7/(1 + x8)]

当 x = 1 时

f' (1) = (1 + 1)(1 + 12)(1 + 14)(1 + 18) [1/(1 + 1) + 2(1)/(1 + 12) + 4(13)/(1 + 14) + 8(17)/(1 + 18)]

f' (1) = 2 × 2 × 2 × 2 [1/2 + 2/2 + 4/2 + 8/2]

f' (1) = 16 [1/2 + 1 + 2 + 4]

f' (1) = 8 + 16 + 32 + 64

f' (1) = 120

17. 用下面提到的三种方法求导 (x2 - 5x + 8)(x3 + 7x + 9)

(i) 使用乘积法则

(ii) 通过展开乘积得到一个多项式

(iii) 使用对数求导法。

它们都得到相同的答案吗?

解决方案

设 y = (x2 - 5x + 8)(x3 + 7x + 9)

(i) 使用乘积法则

对两边关于 x 求导

dy/dx = d/dx [(x2 - 5x + 8)(x3 + 7x + 9)]

dy/dx = (x2 - 5x + 8) d/dx (x3 + 7x + 9) + (x3 + 7x + 9) d/dx (x2 - 5x + 8)

dy/dx = (x2 - 5x + 8) [d/dx (x3) + 7 d/dx (x) + d/dx (9)] + (x3 + 7x + 9) [d/dx (x2) - 5 d/dx (x) + d/dx (8)]

dy/dx = (x2 - 5x + 8) [3x2 + 7] + (x3 + 7x + 9) [2x - 5]

dy/dx = 3x4 - 15x3 + 24x2 + 7x2 - 35x + 56 + 2x4 + 14x2 + 18x - 5x3 - 35x - 45

dy/dx = 5x4 - 20x3 + 45x2 - 52x + 11

(ii) 使用乘积展开得到一个多项式

y = (x2 - 5x + 8)(x3 + 7x + 9)

y = x5 - 5x4 + 8x3 + 7x3 - 35x2 + 56x + 9x2 - 45x + 72

y = x5 - 5x4 + 15x3 - 26x2 + 11x + 72

对两边关于 x 求导

dy/dx = d/dx (x5) - 5 d/dx (x4) + 15 d/dx (x3) - 26 d/dx (x2) + 11 d/dx (x) + d/dx (72)

dy/dx = 5x4 - 5 (4x3) + 15 (3x2) - 26 (2x) + 11 + 0

dy/dx = 5x4 - 20x3 + 45x2 - 52x + 11

(iii) 使用对数求导法

y = (x2 - 5x + 8)(x3 + 7x + 9)

两边取对数

log y = log [(x2 - 5x + 8)(x3 + 7x + 9)]

log y = log (x2 - 5x + 8) + log (x3 + 7x + 9)

对两边关于 x 求导

d/dx (log y) = d/dx (log (x2 - 5x + 8) + log (x3 + 7x + 9))

(1/y) dy/dx = d/dx (log (x2 - 5x + 8)) + d/dx (log (x3 + 7x + 9))

(1/y) dy/dx = (1/(x2 - 5x + 8)) d/dx (x2 - 5x + 8) + (1/(x3 + 7x + 9)) d/dx (x3 + 7x + 9)

(1/y) dy/dx = (1/(x2 - 5x + 8)) (2x - 5) + (1/(x3 + 7x + 9)) (3x2 + 7)

(1/y) dy/dx = (2x - 5)/(x2 - 5x + 8) + (3x2 + 7)/(x3 + 7x + 9)

(1/y) dy/dx = [(2x - 5)(x3 + 7x + 9) + (x2 - 5x + 8)(3x2 + 7)]/(x3 + 7x + 9)(x2 - 5x + 8)

(1/y) dy/dx = [2x4 + 14x2 + 18x - 5x3 - 35x - 45 + 3x4 - 15x3 + 24x2 + 7x2 - 35x + 56]/(x3 + 7x + 9)(x2 - 5x + 8)

(1/y) dy/dx = [5x4 - 20x3 + 45x2 - 52x - 11]/(x3 + 7x + 9)(x2 - 5x + 8)

dy/dx = y [5x4 - 20x3 + 45x2 - 52x - 11]/(x3 + 7x + 9)(x2 - 5x + 8)

dy/dx = (x2 - 5x + 8)(x3 + 7x + 9) [5x4 - 20x3 + 45x2 - 52x - 11]/(x3 + 7x + 9)(x2 - 5x + 8)

dy/dx = 5x4 - 20x3 + 45x2 - 52x - 11

因此,这三种方法都得到了相同的答案。

18. 如果 u、v 和 w 是 x 的函数,则表明

d/dx (u .v .w) = du/dx .v .w + u .dv/dx .w + u .v .dw/dx

用两种方式 - 第一种是通过重复应用乘积法则,第二种是通过对数求导法。

解决方案

设 y = u .v .w

通过重复应用乘积法则

y = u .(v .w)

对两边关于 x 求导

dy/dx = d/dx (u .(v .w))

dy/dx = u d/dx (v .w) + v .w du/dx

dy/dx = u [v dw/dx + w dv/dx] + du/dx .v .w

dy/dx = du/dx .v .w + u .dv/dx .w + u .v .dw/dx

因此,证明完毕。

通过使用对数求导法

y = u .v .w

两边取对数

log y = log (u .v .w)

log y = log u + log v + log w

对两边关于 x 求导

d/dx (log y) = d/dx (log u + log v + log w)

(1/y) dy/dx = d/dx (log u) + d/dx (log v) + d/dx (log w)

(1/y) dy/dx = (1/u) du/dx + (1/v) dv/dx + (1/w) dw/dx

dy/dx = y [(1/u) du/dx + (1/v) dv/dx + (1/w) dw/dx]

dy/dx = u .v .w [(1/u) du/dx + (1/v) dv/dx + (1/w) dw/dx]

dy/dx = (v .w) du/dx + (u .w) dv/dx + (u .v) dw/dx

dy/dx = du/dx .v .w + u .dv/dx .w + u .v .dw/dx

因此,证明完毕。

练习 5.6

如果在1至10题中给出的方程中,x和y是参数连接的,则在不消除参数的情况下,求 dy/dx。

1. x = 2at2, y = at4

解决方案

x = 2at2 和 y = at4

所以,

dx/dt = d/dt (2at2)

dx/dt = 2a d/dt (t2)

dx/dt = 2a (2t)

dx/dt = 4at

并且

dy/dt = d/dt (at4)

dy/dt = a d/dt (t4)

dy/dt = 4at3

因此,

dy/dx = (dy/dt)/(dx/dt)

dy/dx = (4at3)/(4at)

dy/dx = t2

2. x = a cos θ, y = b cos θ

解决方案

x = a cos θ, y = b cos θ

所以,

dx/dθ = d/dθ (a cos θ)

dx/dθ = a d/dθ (cos θ)

dx/dθ = a (-sin θ)

dx/dθ = -a sin θ

并且

dy/dθ = d/dθ (b cos θ)

dy/dθ = b d/dθ (cos θ)

dy/dθ = b (-sin θ)

dy/dθ = -b sin θ

因此,

dy/dx = (dy/dθ)/(dx/dθ)

dy/dx = (-b sin θ)/(-a sin θ)

dy/dx = b/a

3. x = sin t, y = cos 2t

解决方案

x = sin t 和 y = cos 2t

所以,

dx/dt = d/dt (sin t)

dx/dt = cos t

并且

dy/dt = d/dt (cos 2t)

dy/dt = (-sin 2t) 2 dt/dt

dy/dt = -2 sin 2t

因此,

dy/dx = (dy/dt)/(dx/dt)

dy/dx = (-2 sin 2t)/(cos t)

dy/dx = (-2(2 sin t cos t))/(cos t)

dy/dx = -4 sin t

4. x = 4t, y = 4/t

解决方案

x = 4t 和 y = 4/t

所以,

dx/dt = d/dt (4t)

dx/dt = 4 d/dt (t)

dx/dt = 4

并且

dy/dt = d/dt (4/t)

dy/dt = 4 d/dt (t-1)

dy/dt = -4/t2

因此,

dy/dx = (dy/dt)/(dx/dt)

dy/dx = (-4/t2)/(4)

dy/dx = -1/t2

5. x = cos θ - cos 2θ, y = sin θ - sin 2θ

解决方案

x = cos θ - cos 2θ, y = sin θ - sin 2θ

所以,

dx/dθ = d/dθ (cos θ - cos 2θ)

dx/dθ = d/dθ (cos θ) - d/dθ (cos 2θ)

dx/dθ = (-sin θ) - (-sin 2θ) 2 d/dθ (θ)

dx/dθ = -sin θ + 2 sin 2θ

并且

dy/dθ = d/dθ (sin θ - sin 2θ)

dy/dθ = d/dθ (sin θ) - d/dθ (sin 2θ)

dy/dθ = cos θ - cos 2θ .2 d/dθ (θ)

dy/dθ = cos θ - 2 cos 2θ

因此,

dy/dx = (dy/dθ)/(dx/dθ)

dy/dx = (cos θ - 2 cos 2θ)/( -sin θ + 2 sin 2θ)

6. x = a(θ - sin θ), y = a(1 + cos θ)

解决方案

x = a (θ - sin θ) 和 y = a(1 + cos θ)

所以,

dx/dθ = d/dθ (a (θ - sin θ))

dx/dθ = a d/dθ (θ - sin θ) + (θ - sin θ) d/dx (a)

dx/dθ = a (1 - cos θ)

并且

dy/dθ = d/dθ (a(1 + cos θ))

dy/dθ = a d/dθ (1 + cos θ) + (1 + cos θ) d/dθ (a)

dy/dθ = a (-sin θ)

dy/dθ = -a sin θ

因此,

dy/dx = (dy/dθ)/(dx/dθ

dy/dx = (-a sin θ)/(a (1 - cos θ)

dy/dx = -sin θ/(1 - cos θ)

dy/dx = -(2 sin θ/2 cos θ/2)/(2 sin2 θ/2)

dy/dx = -(cos θ/2)/(sin θ/2)

dy/dx = -cot θ/2

7. x = sin3 t/√(cos 2t), y = cos3 t/√(cos 2t)

解决方案

x = sin3 t/√(cos 2t), y = cos3 t/√(cos 2t)

所以,

dx/dt = d/dt (sin3 t/√(cos 2t))

dx/dt = [√(cos 2t) d/dt (sin3 t) - sin3 t d/dt (√cos 2t)]/√cos2 2t

dx/dt = [√(cos 2t) (3 sin2 t) d/dt (sin t) -(sin3 t)/2√(cos 2t) d/dt (cos 2t)]/cos 2t

dx/dt = [3 sin2 t cos t √(cos 2t) + (sin3 t sin 2t)/2√(cos 2t) d/dt (2t)]/cos 2t

dx/dt = [3 sin2 t cos t √(cos 2t) + (sin3 t sin 2t)/√(cos 2t)]/cos 2t

dx/dt = [(3 sin2 t cos t √(cos 2t)2 + sin3 t sin 2t)/√(cos 2t)]/cos 2t

dx/dt = [3 sin2 t cos t cos 2t + sin3 t sin 2t]/(cos 2t)√(cos 2t)

并且

dy/dt = d/dt (cos3 t/√(cos 2t))

dy/dt = [√(cos 2t) d/dt (cos3 t) - cos3 t d/dt (√cos 2t)]/√cos2 2t

dy/dt = [√(cos 2t) (3 cos2 t) d/dt (cos t) -(cos3 t)/2√(cos 2t) d/dt (cos 2t)]/cos 2t

dy/dt = [-3 cos2 t sin t √(cos 2t) + (cos3 t sin 2t)/2√(cos 2t) d/dt (2t)]/cos 2t

dy/dt = [-3 cos2 t sin t √(cos 2t) + (cos3 t sin 2t)/√(cos 2t)]/cos 2t

dy/dt = [(-3 cos2 t sin t √(cos 2t)2 + cos3 t sin 2t)/√(cos 2t)]/cos 2t

dy/dt = [-3 cos2 t sin t cos 2t + cos3 t sin 2t]/(cos 2t)√(cos 2t)

因此,

dy/dx = (dy/dt)/(dx/dt)

dy/dx = [(-3 cos2 t sin t cos 2t + cos3 t sin 2t)/(cos 2t)√(cos 2t)]/[(3 sin2 t cos t cos 2t + sin3 t sin 2t)/(cos 2t)√(cos 2t)]

dy/dx = cos2 t (-3 cos 2t sin t + cos t sin 2t)/sin2 t (3 cos 2t cos t + sin t sin 2t)

dy/dx = cos2 t (-3 cos 2t sin t + cos t 2 sin t cos t)/sin2 t (3 cos 2t cos t + sin t 2 sin t cos t)

dy/dx = [cos2 t sin t (-3 cos 2t + 2 cos2 t)]/[sin2 t cos t (3 cos 2t + 2 sin2 t)]

dy/dx = [cos t (-3 (2 cos2 t - 1) + 2 cos2 t)]/[sin t (3 (1 - 2 sin2 t) + 2 sin2 t)]

dy/dx = [cos t (-6 cos2 t + 3 + 2 cos2 t)]/[sin t (3 - 6 sin2 t + 2 sin2 t)]

dy/dx = [cos t (-4 cos2 t + 3)]/[sin t (3 - 4 sin2 t)]

dy/dx = -(4 cos3 t - 3 cos t)/(3 sin t - 4 sin3 t)

dy/dx = -(cos 3t)/(sin 3t)

dy/dx = -cot 3t

8. x = a (cos t + log tan t/2), y = a sin t

解决方案

x = a (cos t + log tan t/2), y = a sin t

所以,

dx/dt = a d/dt (cos t + log tan t/2)

dx/dt = a [d/dt (cos t) + d/dt (log tan t/2)]

dx/dt = a [-sin t + (1/(tan t/2)) d/dt (tan t/2)]

dx/dt = a [-sin t + (sec2 t/2)/(tan t/2) d/dt (t/2)]

dx/dt = a [-sin t + (1/(sin t/2 cos t/2)) (1/2)]

dx/dt = a [-sin t + 1/sin t]

dx/dt = a [-sin2 t + 1]/sin t

dx/dt = a (cos2 t)/sin t

并且

dy/dt = a d/dt (sin t)

dy/dt = a cos t

因此,

dy/dx = (dy/dt)/(dx/dt)

dy/dx = (a cos t)/((a cos2 t)/sin t)

dy/dx = sin t/cos t

dy/dx = tan t

9. x = a sec θ, y = b tan θ

解决方案

x = a sec θ, y = b tan θ

所以,

dx/dθ = d/dθ (a sec θ)

dx/dθ = a d/dθ (sec θ)

dx/dθ = a sec θ tan θ

并且

dy/dθ = b d/dθ (tan θ)

dy/dθ = b sec2 θ

因此,

dy/dx = (dy/\dθ)/(dx/dθ)

dy/dx = (b sec2 θ)/(a sec θ tan θ)

dy/dx = (b sec θ)/(a tan θ)

dy/dx = b/(a sin θ)

dy/dx = (b cosec θ)/a

10. x = a (cos θ + θ sin θ), y = (sin θ - θ cos θ)

解决方案

x = a (cos θ + θ sin θ), y = (sin θ - θ cos θ)

所以,

dx/dθ = a d/dθ (cos θ + θ sin θ)

dx/dθ = a (-sin θ + θ d/dθ (sin θ) + sin θ d/dθ (θ))

dx/dθ = a (-sin θ + θ cos θ + sin θ)

dx/dθ = aθ cos θ

并且

dy/dθ = a d/dθ (sin θ - θ cos θ)

dy/dθ = a [cos θ - (θ d/dθ (cos θ) + cos θ d/dθ (θ))]

dy/dθ = a [cos θ - (-θ sin θ + cos θ)]

dy/dθ = a [cos θ + θ sin θ - cos θ]

dy/dθ = aθ sin θ

因此,

dy/dx = (dy/dθ)/(dx/dθ)

dy/dx = (aθ sin θ)/(aθ cos θ)

dy/dx = tan θ

11. 如果 x = √(asin-1 t), y = √(acos-1 t),则表明 dy/dx = -y/x。

解决方案

x = √(asin-1 t), y = √(acos-1 t)

所以,

dx/dθ = d/dx (√(asin-1 t))

dx/dθ = (1/2√(asin-1 t)) d/dx (asin-1 t)

dx/dθ = (asin-1 t)/2√(asin-1 t) .log a/√(1 - t2)

dx/dθ = x2/2x .log a/√(1 - t2)

dx/dθ = (x log a)/√(1 - t2)

并且

dy/dθ = d/dx (√(acos-1 t))

dy/dθ = (1/2√( acos-1 t)) d/dx (acos-1 t)

dy/dθ = (acos-1 t)/2√( acos-1 t) .-log a/√(1 - t2)

dy/dθ = -y2/2y .log a/√(1 - t2)

dy/dθ = -(y log a)/√(1 - t2)

因此,

dy/dx = (dy/dθ)/(dx/dθ)

dy/dx = -[(y log a)/√(1 - t2)]/[(x log a)/√(1 - t2)]

dy/dx = -(y log a)/(x log a)

dy/dx = -y/x

因此,证明完毕。

练习 5.7

求1至10题所给函数的二阶导数。

1. x2 + 3x + 2

解决方案

设 y = x2 + 3x + 2

一阶导数 = dy/dx

dy/dx = d/dx (x2 + 3x + 2)

dy/dx = 2x + 3

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (2x + 3)

d2y/dx2 = 2

2. x20

解决方案

设 y = x20

一阶导数 = dy/dx

dy/dx = d/dx (x20)

dy/dx = 20x19

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (20x19)

d2y/dx2 = 20 (19x18)

d2y/dx2 = 380x18

3. x .cos x

解决方案

设 y = x cos x

一阶导数 = dy/dx

dy/dx = d/dx (x cos x)

dy/dx = x d/dx (cos x) + cos x d/dx (x)

dy/dx = -x sin x + cos x

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (-x sin x + cos x)

d2y/dx2 = (-x d/dx (sin x) + sin x d/dx (-x)) + d/dx (cos x)

d2y/dx2 = -x cos x - sin x - sin x

d2y/dx2 = -x cos x - 2 sin x

4. log x

解决方案

设 y = log x

一阶导数 = dy/dx

dy/dx = d/dx (log x)

dy/dx = 1/x

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (1/x)

d2y/dx2 = -1/√x

5. x3 .log x

解决方案

设 y = x3 log x

一阶导数 = dy/dx

dy/dx = d/dx (x3 log x)

dy/dx = x3 d/dx (log x) + log x d/dx (x3)

dy/dx = x3/x + 3x2 log x

dy/dx = x2 + 3x2 log x

dy/dx = x2(1 + 3 log x)

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (x2(1 + 3 log x))

d2y/dx2 = x2 d/dx (1 + 3 log x) + (1 + 3 log x) d/dx (x2)

d2y/dx2 = x2 (3/x) + (1 + 3 log x)(2x)

d2y/dx2 = 3x + (1 + 3 log x)(2x)

d2y/dx2 = x (3 + 2 + 6 log x)

d2y/dx2 = x (5 + 6 log x)

6. ex sin 5x

解决方案

设 y = ex sin 5x

一阶导数 = dy/dx

dy/dx = d/dx (ex sin 5x)

dy/dx = ex d/dx (sin 5x) + sin 5x d/dx (ex)

dy/dx = ex cos 5x d/dx (5x) + ex sin 5x

dy/dx = 5ex cos 5x + ex sin 5x

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (5ex cos 5x + ex sin 5x)

d2y/dx2 = [5ex d/dx (cos 5x) + cos 5x d/dx (5ex)] + [ex d/dx (sin 5x) + sin 5x d/dx (ex)]

d2y/dx2 = -5ex sin 5x d/dx (5x) + 5ex cos 5x + ex cos 5x d/dx (5x) + ex sin 5x

d2y/dx2 = -25ex sin 5x + 5ex cos 5x + 5ex cos 5x + ex sin 5x

d2y/dx2 = -24ex sin 5x + 10ex cos 5x

d2y/dx2 = ex (10 cos 5x - 24ex sin 5x)

7. e6x cos 3x

解决方案

设 y = e6x cos 3x

一阶导数 = dy/dx

dy/dx = d/dx (e6x cos 3x)

dy/dx = e6x d/dx (cos 3x) + cos 3x d/dx (e6x)

dy/dx = -e6x sin 3x d/dx (3x) + e6x cos 3x d/dx (6x)

dy/dx = -3e6x sin 3x + 6e6x cos 3x

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (-3e6x sin 3x + 6e6x cos 3x)

d2y/dx2 = [-3e6x d/dx (sin 3x) + sin 3x d/dx (-3e6x)] + [6e6x d/dx (cos 3x) + cos 3x d/dx (6e6x)]

d2y/dx2 = -3e6x cos 3x d/dx (3x) - 3e6x sin 3x d/dx (6x) - 6e6x sin 3x d/dx (3x) + 6e6x cos 3x d/dx (6x)

d2y/dx2 = -9e6x cos 3x - 18e6x sin 3x - 18e6x sin 3x + 36e6x cos 3x

d2y/dx2 = 27e6x cos 3x - 36e6x sin 3x

d2y/dx2 = 9e6x (3 cos 3x - 4 sin 3x)

8. tan-1 x

解决方案

设 y = tan-1 x

一阶导数 = dy/dx

dy/dx = d/dx (tan-1 x)

dy/dx = 1/(1 + x2)

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (1/(1 + x2))

d2y/dx2 = [(1 + x2) d/dx (1) - d/dx (1 + x2)]/(1 + x2)2

d2y/dx2 = [0 - 2x)]/(1 + x2)2

d2y/dx2 = -2x/(x2 + 1)2

9. log (log x)

解决方案

令 y = log (log x)

一阶导数 = dy/dx

dy/dx = d/dx (log (log x))

dy/dx = (1/log x) d/dx (log x)

dy/dx = (1/log x) (1/x)

dy/dx = 1/(x log x)

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (1/(x log x))

d2y/dx2 = [(x log x) d/dx (1) - d/dx (x log x)]/(x log x)2

d2y/dx2 = [0 - (x d/dx (log x) + log x d/dx (x))]/(x log x)2

d2y/dx2 = [-(x (1/x) + log x)]/(x log x)2

d2y/dx2 = -(1 + log x)/(x log x)2

10. sin (log x)

解决方案

设 y = sin (log x)

一阶导数 = dy/dx

dy/dx = d/dx (sin (log x))

dy/dx = cos (log x) d/dx (log x)

dy/dx = cos (log x) (1/x)

dy/dx = (cos (log x))/x

二阶导数 = d2y/dx2

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx ((cos (log x))/x)

d2y/dx2 = [x d/dx (cos (log x)) - cos (log x) d/dx (x)]/x2

d2y/dx2 = [-x sin (log x) d/dx (log x) - cos (log x)]/x2

d2y/dx2 = [-(x sin (log x))/x - cos (log x)]/x2

d2y/dx2 = -[sin (log x) + cos (log x)]/x2

11. 如果 y = 5 cos x - 3 sin x,则证明 d2y/dx2+ y = 0

解决方案

y = 5 cos x - 3 sin x

对两边关于 x 求导

dy/dx = d/dx (5 cos x - 3 sin x)

dy/dx = -5 sin x - 3 cos x

现在,

d2y/dx2= d/dx (dy/dx)

d2y/dx2 = d/dx (-5 sin x - 3 cos x)

d2y/dx2 = -5 cos x + 3 sin x

所以,

d2y/dx2 + y = -5 cos x + 3 sin x + 5 cos x - 3 sin x

d2y/dx2 + y = 0

因此,证明完毕。

12. 如果 y = cos-1 x,则求 d2y/dx2,使其仅以 y 表示。

解决方案

y = cos-1 x

cos y = x

对两边关于 x 求导

d/dx (cos y) = d/dx (x)

-sin y dy/dx = 1

dy/dx = -1/sin y

现在,

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (-1/sin y)

d2y/dx2 = d/dx (-cosec y)

d2y/dx2 = -(-cosec y cot y) dy/dx

d2y/dx2 = (cosec y cot y) (-cosec y)

d2y/dx2 = -cosec2 y cot y

13. 如果 y = 3 cos (log x) + 4 sin (log x),则表明 x2y2 + xy1 + y = 0。

解决方案

y = 3 cos (log x) + 4 sin (log x)

y1 = dy/dx

y1 = d/dx (3 cos (log x) + 4 sin (log x))

y1 = 3 d/dx (cos (log x)) + 4 d/dx (sin (log x))

y1 = -3 sin (log x) d/dx (log x) + 4 cos (log x) d/dx (log x)

y1 = -(3 sin (log x))/x + (4 cos (log x))/x

y1 = (1/x) [-3 sin (log x) + 4 cos (log x)]

xy1 = -3 sin (log x) + 4 cos (log x)

y2 = d2y/dx2

y2 = d/dx (dy/dx)

y2 = d/dx (y1)

y2 = d/dx ((1/x) [-3 sin (log x) + 4 cos (log x)])

y2 = (1/x) d/dx [-3 sin (log x) + 4 cos (log x)] + [-3 sin (log x) + 4 cos (log x)] d/dx (1/x)

y2 = (1/x) [-3 d/dx (sin (log x)) + 4 d/dx (cos (log x))] - [-3 sin (log x) + 4 cos (log x)]/x2

y2 = (1/x) [-3 cos (log x) d/dx (log x) - 4 sin (log x) d/dx (log x) + {3 sin (log x) - 4 cos (log x)}/x]

xy2 = [-(3 cos (log x))/x - (4 sin (log x))/x + (3 sin (log x))/x - (4 cos (log x))/x]

xy2 = -[(3 cos (log x))/x + (4 sin (log x))/x] - (1/x) (-3 sin (log x))/x + (4 cos (log x))/x]

xy2 = -[(3 cos (log x))/x + (4 sin (log x))/x] - y1

xy2 + y1 = -(1/x) y

x2y2 + xy1 = -y

x2y2 + xy1 + y = 0

因此,证明完毕。

14. 如果 y = Aemx + Benx,则表明 d2y/dx2 - (m + n) dy/dx + mny = 0。

解决方案

y = Aemx + Benx

对两边关于 x 求导

dy/dx = d/dx (Aemx + Benx)

dy/dx = Aemx d/dx (mx) + Benx d/dx (nx)

dy/dx = mAemx + nBenx

对两边关于 x 求导

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (mAemx + nBenx)

d2y/dx2 = m d/dx (Aemx) + n d/dx (Benx)

d2y/dx2 = m (mAemx) + n (nBenx)

d2y/dx2 = m2Aemx + n2Benx

现在,

LHS = d2y/dx2- (m + n) dy/dx + mny

= m2Aemx + n2Benx - (m + n) (mAemx + nBenx) + mny

= m2Aemx + n2Benx - (m2Aemx + n2Benx + mnAemx + mnBenx) + mny

= m2Aemx + n2Benx - m2Aemx - n2Benx - mnAemx - mnBenx + mny

= -mnAemx - mnBenx + mny

= -mn (Aemx - mnBenx - y)

= -mn (Aemx - mnBenx - Aemx + mnBenx)

= -mn (0)

= 0 = RHS

因此,证明完毕。

15. 如果 y = 500e7x + 600e-7x,则表明 d2y/dx2 = 49y。

解决方案

y = 500e7x + 600e-7x

对两边关于 x 求导

dy/dx = d/dx (500e7x + 600e-7x)

dy/dx = 500e7x d/dx (7x) + 600e-7x d/dx (-7x)

dy/dx = 3500e7x - 4200e-7x

对两边关于 x 求导

d2y/dx2 = d/dx (dy/dx)

d2y/dx2 = d/dx (3500e7x - 4200e-7x)

d2y/dx2 = 3500 d/dx (e7x) - 4200 d/dx (e-7x)

d2y/dx2 = 7 (3500e7x) + 7 (4200e-7x)

d2y/dx2 = (49) 500emx + (49) 600enx

d2y/dx2 = 49 (500e7x + 600e-7x)

d2y/dx2 = 49y

因此,证明完毕。

16. 如果 ey(x + 1) = 1,则表明 d2y/dx2 = (dy/dx)2

解决方案

ey(x + 1) = 1

对两边关于 x 求导

d/dx (ey(x + 1)) = d/dx (1)

ey d/dx (x + 1) + (x + 1) d/dx (ey) = 0

ey + (x + 1) (ey) dy/dx = 0

ey = -(x + 1) (ey) dy/dx

1 = -(x + 1) dy/dx

dy/dx = -1/(x + 1)

对两边关于 x 求导

d2y/dx2 = d/dx (-1/(x + 1))

d2y/dx2 = [(x + 1) d/dx (-1) + d/dx (x + 1)]/(x + 1)2

d2y/dx2 = [(x + 1) d/dx (-1) + d/dx (x + 1)]/(x + 1)2

d2y/dx2 = [0 + 1]/(x + 1)2

d2y/dx2 = 1/(x + 1)2

d2y/dx2 = [-1/(x + 1)]2

d2y/dx2 = (dy/dx)2

因此,证明完毕。

17. 如果 y = (tan-1 x)2,则表明 (x2 + 1)2y2 + 2x (x2 + 1)y1 = 2。

解决方案

y = (tan-1 x)2

y1 = dy/dx

y1 = d/dx (tan-1 x)2

y1 = 2 tan-1 x d/dx (tan-1 x)

y1 = (2 tan-1 x)/(1 + x2)

(1 + x2) y1 = 2 tan-1 x

对两边关于 x 求导

d/dx ((1 + x2) y1) = d/dx (2 tan-1 x)

(1 + x2) d/dx (y1) + y1 d/dx (1 + x2) = 2/(1 + x2)

(1 + x2)2 y2 + 2x y1 (1 + x2) = 2

因此,证明完毕。

杂项练习

对1至11题所给函数求导

1. (3x2 - 9x + 5)9

解决方案

设 y = (3x2 - 9x + 5)9

对两边关于 x 求导

dy/dx = d/dx (3x2 - 9x + 5)9

dy/dx = 9 (3x2 - 9x + 5) d/dx (3x2 - 9x + 5)

dy/dx = 9 (3x2 - 9x + 5) (6x - 9)

dy/dx = 9 (3x2 -9x + 5) 3 (2x - 9)

dy/dx = 27 (3x2 - 9x + 5)(2x - 9)

2. sin3 x + cos6 x

解决方案

设 y = sin3 x + cos6 x

对两边关于 x 求导

dy/dx = d/dx (sin3 x + cos6 x)

dy/dx = 3 sin2 x d/dx (sin x) + 6 cos5 x d/dx (cos x)

dy/dx = 3 sin2 x cos x - 6 cos5 x sin x

dy/dx = 3 sin x cos x (sin x - 2 cos4 x)

3. (5x)3 cos 2x

解决方案

设 y = (5x)3 cos 2x

两边取对数

log y = log (5x)3 cos 2x

log y = 3 cos 2x log 5x

对两边关于 x 求导

(1/y) dy/dx = d/dx (3 cos 2x log 5x)

(1/y) dy/dx = 3 [cos 2x d/dx (log 5x) + log 5x d/dx (cos 2x)]

(1/y) dy/dx = 3 [cos 2x (1/5x) d/dx (5x) - log 5x (sin 2x) d/dx (2x)]

(1/y) dy/dx = 3 [(5 cos 2x)/5x - 2 sin 2x log 5x]

(1/y) dy/dx = 3 [cos 2x - 2x sin 2x log 5x]/x

dy/dx = 3y [cos 2x - 2x sin 2x log 5x]/x

dy/dx = 3 (5x)3 cos 2x [cos 2x - 2x sin 2x log 5x]/x

4. sin-1 (x√x), 0 <= x <= 1

解决方案

设 y = sin-1 (x√x)

对两边关于 x 求导

dy/dx = d/dx (sin-1 (x√x))

dy/dx = (1/√(1 - (x√x)2)) d/dx (x√x)

dy/dx = (1/√(1 - (x√x)2)) [x d/dx (√x) + (√x) d/dx (x)]

dy/dx = (1/√(1 - (x√x)2)) [x (1/2√x) + (√x)]

dy/dx = (1/√(1 - (x√x)2)) [x + 2(x)]/2√x

dy/dx = (1/√(1 - x3)) (3x/2√x)

dy/dx = 3√x/2√(1 - x3)

5. (cos-1 x/2)/√(2x + 7), -2 < x < 2

解决方案

设 y = (cos-1 x/2)/√(2x + 7)

对两边关于 x 求导

dy/dx = d/dx [(cos-1 x/2)/√(2x + 7)]

dy/dx = [√(2x + 7) d/dx (cos-1 x/2) - (cos-1 x/2) d/dx √(2x + 7)]/(2x + 7)

dy/dx = [-√(2x + 7)/√(1 - x2/4) d/dx (x/2) - ((cos-1 x/2)/2√(2x + 7)) d/dx (2x + 7)]/(2x + 7)

dy/dx = [-√(2x + 7)/√(1 - x2/4) (1/2) - ((2 cos-1 x/2)/2√(2x + 7))]/(2x + 7)

dy/dx = [-√(2x + 7)/2√(1 - x2/4) - ((cos-1 x/2)/√(2x + 7))]/(2x + 7)

dy/dx = [-√(2x + 7)/√(4 - x2) - ((cos-1 x/2)/√(2x + 7))]/(2x + 7)

dy/dx = [-(2x + 7) - (√(4 - x2)) cos-1 x/2]/(2x + 7)√(2x + 7)√(4 - x2)

dy/dx = -[2x + 7 + (√(4 - x2)) cos-1 x/2]/(2x + 7)√(2x + 7)√(4 - x2)

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

y = cot-1 [(sin (x/2) + cos (x/2) - sin (x/2) + cos (x/2))/(sin (x/2) + cos (x/2) + sin (x/2) - cos (x/2))]

y = cot-1 [(2 cos (x/2))/(2 sin (x/2))]

y = cot-1 [cos (x/2)/sin (x/2)]

y = cot-1 [cot (x/2)]

y = x/2

对两边关于 x 求导

dy/dx = d/dx (x/2)

dy/dx = 1/2

7. (log x)log x, x > 1

解决方案

设 y = (log x)log x

两边取对数

log y = log (log x)log x

log y = log x .log (log x)

对两边关于 x 求导

d/dx (log y) = d/dx (log x .log (log x))

(1/y) dy/dx = log x .d/dx (log (log x)) + log (log x) .d/dx (log x)

(1/y) dy/dx = log x .(1/log x) .d/dx (log x) + log (log x) (1/x)

(1/y) dy/dx = 1/x + log (log x)/x

(1/y) dy/dx = (1 + log (log x))/x

dy/dx = y (1 + log (log x))/x

dy/dx = (log x)log x (1 + log (log x))/x

8. cos (a cos + b sin x), for some constant a and b.

解决方案

设 y = cos (a cos x + b sin x)

对两边关于 x 求导

dy/dx = d/dx (cos (a cos x + b sin x))

dy/dx = (-sin (a cos x + b sin x)) d/dx (a cos x + b sin x)

dy/dx = -sin (a cos x + b sin x) (-a sin x + b cos x)

dy/dx = sin (a cos x + b sin x) (a sin x - b cos x)

dy/dx = sin (a2 sin2 x - b2 cos2 x)

9. (sin x - cos x)(sin x - cos x), π/4 < x < 3π/4

解决方案

设 y = (sin x - cos x)(sin x - cos x)

两边取对数

log y = log ((sin x - cos x)(sin x - cos x))

log y = (sin x - cos x) .log (sin x - cos x)

对两边关于 x 求导

d/dx (log y) = d/dx ((sin x - cos x) .log (sin x - cos x))

(1/y) dy/dx = (sin x - cos x) d/dx (log (sin x - cos x)) + log (sin x - cos x) .d/dx (sin x - cos x)

(1/y) dy/dx = (sin x - cos x)/(sin x - cos x) .d/dx (sin x - cos x) + (cos x + sin x) .log (sin x - cos x)

(1/y) dy/dx = (cos x + sin x) + (cos x + sin x) .log (sin x - cos x)

(1/y) dy/dx = (cos x + sin x) [1 + log (sin x - cos x)]

dy/dx = y (cos x + sin x) [1 + log (sin x - cos x)]

dy/dx = (sin x - cos x)(sin x - cos x) (cos x + sin x) [1 + log (sin x - cos x)]

10. xx + xa + ax + aa, for some fixed a > 0 and x > 0。

解决方案

设 y = xx + xa + ax + aa 且 u = xx 且 v = ax

所以,

dy/dx = du/dx + d/dx (xa) + dv/dx + d/dx (aa)

dy/dx = du/dx + axa - 1 + dv/dx + 0

现在,

u = xx

两边取对数

log u = log (xx)

log u = x log x

对两边关于 x 求导

d/dx (log u) = d/dx (x log x)

(1/u) du/dx = x d/dx (log x) + log x .d/dx (x)

(1/u) du/dx = x (1/x) + log x

(1/u) du/dx = 1 + log x

du/dx = u [1 + log x]

du/dx = xx [1 + log x]

并且

v = ax

两边取对数

log v = log (ax)

log v = x log a

对两边关于 x 求导

d/dx (log v) = d/dx (x log a)

(1/v) dv/dx = x d/dx (log a) + log a .d/dx (x)

(1/v) dv/dx = x d/dx (log a) + log a .d/dx (x)

(1/v) dv/dx = 0 + log a

(1/v) dv/dx = log a

dv/dx = v [log a]

dv/dx = ax log a

因此,

dy/dx = du/dx + axa - 1 + dv/dx + 0

dy/dx = xx (1 + log x) + axa - 1 + ax log a

11. xx2 - 3 + (x - 3)x2, for x > 3。

解决方案

设 y = xx2 - 3 + (x - 3)x2

设 u = xx2 - 3且 v = (x - 3)x2

所以,

y = u + v

dy/dx = du/dx + dv/dx

现在,

u = xx2 - 3

两边取对数

log u = log xx2 - 3

log u = (x2 - 3) log x

对两边关于 x 求导

d/dx (log u) = d/dx ((x2 - 3) log x)

(1/u) du/dx = (x2 - 3) d/dx (log x) + log x .d/dx (x2 - 3)

(1/u) du/dx = (x2 - 3)/x + log x .(2x)

(1/u) du/dx = (x2 - 3 + 2x2 log x)/x

du/dx = u (x2 - 3 + 2x2 log x)/x

du/dx = xx2 - 3 (x2 - 3 + 2x2 log x)/x

du/dx = xx2 - 4 (x2 - 3 + 2x2 log x)

并且

v = (x - 3)x2

两边取对数

log v = log (x - 3)x2

log v = x2 .log (x - 3)

对两边关于 x 求导

d/dx (log v) = d/dx (x2 log (x - 3))

(1/v) dv/dx = x2 d/dx (log (x - 3)) + log (x - 3) .d/dx (x2)

(1/v) dv/dx = x2 (1/(x - 3)) + (2x) log (x - 3)

(1/v) dv/dx = x2/(x - 3) + 2x log (x - 3)

(1/v) dv/dx = [x2 + 2x (x - 3) log (x - 3)]/(x - 3)

(1/v) dv/dx = [x2 + (2x2 - 6x) log (x - 3)]/(x - 3)

dv/dx = v [x2 + (2x2 - 6x) log (x - 3)]/(x - 3)

dv/dx = (x - 3)x2 [x2 + (2x2 - 6x) log (x - 3)]/(x - 3)

dv/dx = (x - 3)x2 - 1 [x2 + (2x2 - 6x) log (x - 3)]

因此,

dy/dx = du/dx + dv/dx

dy/dx = xx2 - 4 (x2 - 3 + 2x2 log x) + (x - 3)x2 - 1 [x2 + (2x2 - 6x) log (x - 3)]

12. 求 dy/dx,如果 y = 12 (1 - cos t),x = 10 (t - sin t),-π/2 < t < π/2。

解决方案

已知 x = 10 (t - sin t) 和 y = 12 (1 - cos t)

所以,

dx/dt = d/dt (10 (t - sin t))

dx/dt = 10 d/dt (t - sin t) + (t - sin t) d/dt (10)

dx/dt = 10 (1 - d/dt (sin t)) + 0

dx/dt = 10 (1 - cos t)

并且

dy/dt = d/dt (12 (1 - cos t))

dy/dt = 12 d/dt (1 - cos t) + (1 - cos t) d/dt (12)

dy/dt = 12 (0 - d/dt (cos t)) + 0

dy/dt = 12 (-(-sin t))

dy/dt = 12 sin t

现在,

dy/dx = (dy/dt)/(dx/dt)

dy/dx = (12 sin t)/(10 (1 - cos t))

dy/dx = (6 sin t)/(5 (1 - cos t))

dy/dx = 6 (2 sin t/2 cos t/2)/5(2 sin2 t/2)

dy/dx = 6 (cos t/2)/5(sin t/2)

dy/dx = (6 cot t/2)/5

13. 求 dy/dx,如果 y = sin-1 x + sin-1 √(1 - x2),0 < x < 1。

解决方案

已知 y = sin-1 x + sin-1 √(1 - x2)

对两边关于 x 求导

dy/dx = d/dx (sin-1 x + sin-1 √(1 - x2))

dy/dx = 1/√(1 - x2) + 1/√(1 - √(1 - x2)2) .d/dx (√(1 - x2))

dy/dx = 1/√(1 - x2) + 1/√(1 - (1 - x2)) .(1/2√(1 - x2)) .d/dx (1 - x2)

dy/dx = 1/√(1 - x2) + 1/√(x2) .(1/2√(1 - x2)) .2x

dy/dx = 1/√(1 - x2) + 1/x .(1/2√(1 - x2)) .(-2x)

dy/dx = 1/√(1 - x2) - 2 (1/2√(1 - x2))

dy/dx = 1/√(1 - x2) - 1/√(1 - x2)

dy/dx = 0

14. 如果 x√(1 + y) + y√(1 + x) = 0,对于 -1 < x < 1,则证明 dy/dx = -1/(1 + x)2

解决方案

已知 x√(1 + y) + y√(1 + x) = 0

x√(1 + y) = -y√(1 + x)

两边平方

(x√(1 + y))2 = (-y√(1 + x))2

x2 (1 + y) = y2 (1 + x)

x2 + x2y = y2 + y2x

x2 + x2y - y2 - y2x = 0

x2 - y2 + x2y - y2x = 0

(x - y) (x + y) + xy (x - y) = 0

(x - y) [(x + y) + xy] = 0

x + y + xy = 0

y + xy = -x

y (1 + x) = -x

y = -x/(1 + x)

现在,对两边关于 x 求导

dy/dx = d/dx (-x/(1 + x))

dy/dx = [(1 + x) d/dx (-x) + x d/dx (1 + x)]/(1 + x)2

dy/dx = [(1 + x)(-1) + x (1)]/(1 + x)2

dy/dx = [-1 - x + x]/(1 + x)2

dy/dx = -1/(1 + x)2

所以,LHS = RHS

因此,证明完毕。

15. 如果 (x - a)2 + (y - b)2 = c2,对于某些 c > 0,则表明

[1 + (dy/dx)2]3/2/(d2y/dx2)

是一个与 a 和 b 无关的常数。

解决方案

已知 (x - a)2 + (y - b)2 = c2

对两边关于 x 求导

d/dx [(x - a)2 + (y - b)2] = d/dx (c2)

2 (x - a) d/dx (x - a) + 2 (y - b) d/dx (y - b) = 0

2 (x - a) (1) + 2 (y - b) dy/dx = 0

2 (y - b) dy/dx = -2 (x - a)

(y - b) dy/dx = -(x - a)

dy/dx = -(x - a)/(y - b)

对两边关于 x 求导

d/dx (dy/dx) = d/dx [-(x - a)/(y - b)]

d2y/dx2 = -[(y - b) d/dx (x - a) - (x - a) d/dx (y - b)]/(y - b)2

d2y/dx2 = -[(y - b) (1) - (x - a) dy/dx]/(y - b)2

d2y/dx2 = -[(y - b) - (x - a) (-(x - a)/(y - b))]/(y - b)2

d2y/dx2 = -[(y - b)2 + (x - a)2]/(y - b)(y - b)2

d2y/dx2 = -[(y - b)2 + (x - a)2]/(y - b)3

d2y/dx2 = -c2/(y - b)3

现在,

LHS = [1 + (dy/dx)2]3/2/(d2y/dx2)

= [1 + (-(x - a)/(y - b))2]3/2/(-c2/(y - b)3)

= [1 + (x - a)2/(y - b)2]3/2/(-c2/(y - b)3)

= [{(y - b)2 + (x - a)2}/(y - b)2]3/2/(-c2/(y - b)3)

= [c2/(y - b)2]3/2/(-c2/(y - b)3)

= [c3/(y - b)3]/(-c2/(y - b)3)

= c3/(-c2)

= -c

-c 是一个与 a 和 b 无关的常数。

因此,证明完毕。

16. 如果 cos y = x cos (a + y),cos a ≠ ±1,则证明 dy/dx = cos2 (a + y)/sin a。

解决方案

已知 cos y = x cos (a + y)

x = cos y/cos (a + y)

对 y 两边求导

dx/dy = d/dy (cos y/cos (a + y))

dx/dy = [cos (a + y) .d/dy (cos y) - cos y .d/dy (cos (a + y))]/cos2 (a + y)

dx/dy = [cos (a + y) (-sin y) + sin (a + y) cos y .d/dy (a + y)]/cos2 (a + y)

dx/dy = [-sin y cos (a + y) + sin (a + y) cos y]/cos2 (a + y)

dx/dy = [sin (a + y - y)]/cos2 (a + y)

dx/dy = [sin a]/cos2 (a + y)

因此,

dy/dx = cos2 (a + y)/sin a

所以,LHS = RHS

因此,证明完毕。

17. 如果 x = a (cos t + t sin t) 且 y = a (sin t - t cos t),则求 d2y/dx2

解决方案

已知 x = a (cos t + t sin t) 且 y = a (sin t - t cos t)

所以,

dx/dt = d/dt (a (cos t + t sin t))

dx/dt = a d/dt (cos t) + a d/dt (t sin t)

dx/dt = a (-sin t) + at d/dt (sin t) + a sin t d/dt (t)

dx/dt = -a sin t + at cos t + a sin t

dx/dt = at cos t

并且

dy/dt = d/dt (a (sin t - t cos t))

dy/dt = a d/dt (sin t) - a d/dt (t cos t)

dy/dt = a cos t - at d/dt (cos t) - a cos t d/dt (t)

dy/dt = a cos t - at (-sin t) - a cos t

dy/dt = a cos t + at sin t - a cos t

dy/dt = at sin t

因此,

dy/dx = (dy/dt)/(dx/dt)

dy/dx = (at sin t)/(at cos t)

dy/dx = sin t/cos t

dy/dx = tan t

对两边关于 x 求导

d/dx (dy/dx) = d/dx (tan t)

d2y/dx2 = sec2 t dt/dx

d2y/dx2 = sec2 t .(1/(dx/dt))

d2y/dx2 = sec2 t .(1/at cos t)

d2y/dx2 = sec2 t (sec t)/at

d2y/dx2 = (sec3 t)/at

18. 如果 f (x) = |x|3,则表明 fn (x) 对于所有实数 x 都存在,并求出它。

解决方案

f (x) = |x|3

f (x) 可以重写为

如果 x >= 0,

f (x) = x3

f' (x) = d/dx (x3)

f' (x) = 3x2

f'' (x) = 3 d/dx (x2)

f'' (x) = 6x

如果 x < 0,

f (x) = -x3

f' (x) = -d/dx (x3)

f' (x) = -3x2

f'' (x) = -3 d/dx (x2)

f'' (x) = -6x

因此,f'' (x) 对于所有实数 x 都存在。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

19. 利用 sin (A + B) = sin A cos B + cos A sin B 和求导,得到余弦的和公式。

解决方案

已知 sin (A + B) = sin A cos B + cos A sin B

对两边关于 x 求导

d/dx (sin (A + B) = d/dx (sin A cos B + cos A sin B)

cos (A + B) .d/dx (A + B) = (sin A d/dx (cos B) + cos B d/dx (sin A)) + (cos A d/dx (sin B) + sin B d/dx (cos A))

cos (A + B) .(dA/dx + dB/dx) = (-sin A sin B .dB/dx + cos B cos A .dA/dx) + (cos A cos B .dB/dx - sin B sin A .dA/dx)

cos (A + B) .(dA/dx + dB/dx) = (cos A cos B - sin A sin B) .dB/dx + (cos A cos B - sin A sin B) .dA/dx

cos (A + B) .(dA/dx + dB/dx) = (cos A cos B - sin A sin B) (dB/dx + dA/dx)

cos (A + B) = cos A cos B - sin A sin B

20. 是否存在一个函数,它处处连续但在恰好两点不可导?请论证你的答案。

解决方案

存在这样的函数。例如,

函数 f (x) = |x - 1| + |x - 3| 在所有实点处连续,但在 x = 1 和 x = 3 这两点不可导。

NCERT Solutions Class 12th Maths Chapter 5: Continuity and Differentiability

22. 如果 y = ea cos-1 x, -1 <= x <= 1, 则表明 (1 - x2) d2y/dx2 - x dy/dx - a2y = 0。

解决方案

已知 y = ea cos-1 x

对两边关于 x 求导

dy/dx = d/dx (ea cos-1 x)

dy/dx = ea cos-1 x .d/dx (ea cos-1 x)

dy/dx = a ea cos-1 x .(-1/√(1 - x2))

dy/dx = -ay/√(1 - x2)

两边平方

(dy/dx)2 = (-ay/√(1 - x2))2

(dy/dx)2 = a2y2/(1 - x2)

(1 - x2) (dy/dx)2 = a2y2

对两边关于 x 求导

d/dx [(1 - x2) (dy/dx)2] = d/dx (a2y2)

(1 - x2) d/dx (dy/dx)2 + (dy/dx)2 d/dx (1 - x2) = a2 (2y) dy/dx

(1 - x2) .2 (dy/dx) (d2y/dx2) + (dy/dx)2 (-2x) = 2a2y dy/dx

2 (dy/dx) [(1 - x2) d2y/dx2 - x dy/dx] = 2a2y dy/dx

[(1 - x2) d2y/dx2 - x dy/dx] = a2y

(1 - x2) d2y/dx2 - x dy/dx - a2y = 0

因此,证明完毕。