12 年级数学第 2 章:反三角函数 的 NCERT 解决方案

2024年9月24日 | 阅读18分钟

练习 2.1

求下列各式的主值

1. sin-1 (-1/2)

解决方案

设 sin-1 (-1/2) = y

sin y = -1/2

sin y = -sin π/6

sin y = sin (-π/6)

我们知道 sin-1 的主值区间是 [-π/2, π/2],且 sin (-π/6) = -1/2。

因此,sin-1 (-1/2) 的主值是 -π/6。

2. cos-1 (√3/2)

解决方案

设 cos-1 (√3/2) = y

cos y = √3/2

co y = cos π/6

我们知道 cos-1 的主值区间是 [0, π],且 cos (π/6) = √3/2。

因此,cos-1 (√3/2) 的主值是 π/6。

3. cosec-1 (2)。

解决方案

设 cosec-1 (2) = y

cosec y = 2

cosec y = cosec π/6

我们知道 cosec-1 的主值区间是 [-π/2, π/2] - {0},且 cosec (π/6) = 2。

因此,cosec-1 (2) 的主值是 π/6。

4. tan-1 (-√3)

解决方案

设 tan-1 (-√3) = y

tan y = -√3

tan y = -tan π/3

tan y = tan (-π/3)

我们知道 tan-1 的主值区间是 (-π/2, π/2),且 tan (-π/3) = -√3。

因此,tan-1 (-√3) 的主值是 -π/3。

5. cos-1 (-1/2)

解决方案

设 cos-1 (-1/2) = y

cos y = -1/2

cos y = -cos π/3

cos y = cos (π - π/3)

cos y = cos (2π/3)

我们知道 cos-1 的主值区间是 [0, π],且 cos 2π/3 = -1/2。

因此,cos-1 (-1/2) 的主值是 2π/3。

6. tan-1 (-1)

解决方案

设 tan-1 (-1) = y

tan y = -1

tan y = -tan π/4

tan y = tan (-π/4)

我们知道 tan-1 的主值区间是 (-π/2, π/2),且 tan (-π/4) = -1。

因此,tan-1 (-1) 的主值是 -π/4。

7. sec-1 (2/√3)

解决方案

设 sec-1 (2/√3) = y

sec y = 2/√3

sec y = sec π/6

我们知道 sec-1 的主值区间是 [0, π] - {π/2},且 sec π/6 = 2/√3。

因此,sec-1 (2/√3) 的主值是 π/6。

8. cot-1 (√3)

解决方案

设 cot-1 (√3) = y

cot y = √3

cot y = cot π/6

我们知道 cot-1 的主值区间是 (0, π),且 cot π/6 = √3。

因此,cot-1 (√3) 的主值是 π/6。

9. cos-1 (-1/√2)

解决方案

设 cos-1 (-1/√2) = y

cos y = -1/√2

cos y = -cos π/4

cos y = cos (π - π/4)

cos y = cos (3π/4)

我们知道 cos-1 的主值区间是 [0, π],且 cos 3π/4 = -1/√2。

因此,cos-1 (-1/2) 的主值是 3π/4。

10. cosec-1 (-√2)

解决方案

设 cosec-1 (-√2) = y

cosec y = -√2

cosec y = -cosec π/4

cosec y = cosec (-π/4)

我们知道 cosec-1 的主值区间是 [-π/2, π/2] - {0},且 cosec (-π/4) = -√2。

因此,cosec-1 (­-√2) 的主值是 π/4。

求下列各式的值

11. tan-1 (1) + cos-1 (-1/2) + sin-1 (-1/2)

解决方案

设 tan-1 (1) = x

tan x = 1

tan x = tan π/4

所以,tan-1 (1) = π/4

设 cos-1 (-1/2) = y

cos y = -1/2

cos y = -cos π/3

cos y = cos (π - π/3)

cos y = cos 2π/3

所以,cos-1 (-1/2) = 2π/3

设 sin-1 (-1/2) = z

sin z = -1/2

sin z = -sin π/6

sin z = sin (-π/6)

sin-1 (-1/2) = -π/6

因此,

tan-1 (1) + cos-1 (-1/2) + sin-1 (-1/2) = π/4 + 2π/3 - π/6

= (3π + 8π - 2π)/12

= 9π/12 = 3π/4

12. cos-1 (1/2) + 2 sin-1 (1/2)

解决方案

设 cos-1 (1/2) = x

cos x = 1/2

cos x = cos π/3

所以,cos-1 (1/2) = π/3

设 sin-1 (1/2) = y

sin y = 1/2

sin y = sin π/6

所以,sin-1 (1/2) = π/6

因此,

cos-1 (1/2) + 2 sin-1 (1/2) = π/3 + 2(π/6)

= π/3 + π/3

= 2π/3

13. 如果 sin-1 x = y,那么

  1. 0 ≤ y ≤ π
  2. -π/2 ≤ y ≤ π/2
  3. 0 < y < π
  4. -π/2 < y < π/2

解决方案

sin-1 x = y

sin y = x

我们知道 sin-1 的主值区间是 [-π/2, π/2]。

因此,-π/2 ≤ y ≤ π/2。

14. 求 tan-1 √3 - sec-1 (-2) 的值等于

  1. π
  2. -π/3
  3. π/3
  4. 2π/3

解决方案

设 tan-1 √3 = x

tan x = √3

tan x = tan π/3

我们知道 tan-1 的主值区间是 (-π/2, π/2),且 tan π/3 = √3。

因此,tan-1 √3 = π/3

设 sec-1 (-2) = y

sec y = -2

sec y = -sec π/6

sec y = sec (π - π/6)

sec y = sec 2π/3

我们知道 sec-1 的主值区间是 [0, π] - {π/2},且 sec (2π/3) = -2。

因此,sec-1 (-2) = 2π/3

因此,tan-1 √3 - sec-1 (-2) = π/3 - 2π/3 = -π/3 ⇒ (B) 是正确答案。

练习 2.2

证明下列各式

1. 3 sin-1 x = sin-1 (3x - 4x3), x ∈ [-1/2, 1/2]

解决方案

设 x = sin θ

sin-1 x = θ

取右边 = sin-1 (3x - 4x3)

= sin-1 (3 sin θ - 4 sin3 θ)

= sin-1 [sin 3θ]

= 3θ

= 3 sin-1 x

= 左侧

因此,证明完毕。

2. 3 cos-1 x = cos-1 (4x3 - 3x), x ∈ [1/2, 1]

解决方案

设 x = cos θ

cos-1 x = θ

取右边 = cos-1 (4x3 - 3x)

= cos-1 (4 cos3 θ - 3 cos θ)

= cos-1 (cos 3θ)

= 3θ

= 3 cos-1 x

= 左侧

因此,证明完毕。

将下列函数写成最简形式

3. tan-1 (√(1 + x2) - 1)/x, x ≠ 0

解决方案

令 x = tan θ

tan-1 x = θ

tan-1 (√(1 + x2) - 1)/x = tan-1 (√(1 + tan2 θ) - 1)/tan θ

= tan-1 ((sec θ - 1)/tan θ) = tan-1 ((1 - cos θ)/sin θ)

利用 1 - cos 2A = 2 sin2 A 和 sin 2A = 2 sin A cos A,我们得到

tan-1 ((1 - cos θ)/sin θ) = tan-1 [(2 sin2 θ/2)/(2 sin θ/2 cos θ/2)]

= tan-1 [(sin θ/2)/(cos θ/2)]

= tan-1 (tan θ/2)

= θ/2

= (tan-1 x)/2

4. tan-1 √(1 - cos x)/√(1 + cos x), 0 < x < π

解决方案

tan-1 √(1 - cos x)/√(1 + cos x)

利用 1 - cos 2A = 2 sin2 A 和 1 + cos 2A = 2 cos2 A,我们得到

tan-1 √(1 - cos x)/√(1 + cos x) = tan-1 [√(2 sin2 x/2)/√(2 cos2 x/2)]

= tan-1 [(sin x/2)/(cos x/2)]

= tan-1 (tan x/2)

= x/2

5. tan-1 [(cos x - sin x)/(cos x + sin x)], -π/4 < x < 3π/4

解决方案

tan-1 [(cos x - sin x)/(cos x + sin x)]

将 [(cos x - sin x)/(cos x + sin x)] 的分子和分母都除以 cos x

tan-1 [(cos x - sin x)/(cos x + sin x)]

= tan-1 [(1 - sin x/cos x)/(1 + sin x/cos x)]

= tan-1 [(1 - tan x)/(1 + tan x)]

= tan-1 [(1 - tan x)/(1 - (1)(-tan x))]

利用 tan-1 [(A - B)/(1 + AB)] = tan-1 A - tan-1 B

= tan-1 (1) - tan-1 (tan x)

= tan-1 (tan π/4) - x

= π/4 - x

6. tan-1 x/√(a2 - x2), |x| < a

解决方案

设 x = a sin θ

sin θ = x/a

sin-1 (x/a) = θ

tan-1 x/√(a2 - x2) = tan-1 (a sin θ)/√(a2 - a2 sin2 θ)

= tan-1 (a sin θ)/√a2(1 - sin2 θ)

= tan-1 (a sin θ)/a√cos2 θ

= tan-1 (sin θ)/(cos θ)

= tan-1 (tan θ)

= θ

= sin-1 (x/a)

7. tan-1 (3a2x - x3)/(a3 - 3ax2), a > 0; -a/√3 < x < a/√3

解决方案

设 x = a tan θ

tan θ = x/a

tan-1 (x/a) = θ

tan-1 (3a2x - x3)/(a3 - 3ax2)

= tan-1 (3a2(a tan θ) - a3 tan3 θ)/(a3 - 3a(a2 tan2 θ))

= tan-1 (3a3 tan θ - a3 tan3 θ)/(a3 - 3a3 tan2 θ)

= tan-1 a3(3 tan θ - tan3 θ)/a3(1 - 3 tan2 θ)

= tan-1 (3 tan θ - tan3 θ)/(1 - 3 tan2 θ)

= tan-1 (tan 3θ)

= 3θ

= 3 tan-1 (x/a)

求下列各式的值

8. tan-1 [2 cos (2 sin-1 1/2)]

解决方案

设 sin-1 1/2 = x

sin x = 1/2

sin x = sin π/6

因此,sin-1 1/2 = π/6

tan-1 [2 cos (2 sin-1 1/2)] = tan-1 [2 cos (2 × π/6)]

= tan-1 [2 cos π/3]

= tan-1 [2 × 1/2]

= tan-1 1

= π/4

9. tan [sin-1 2x/(1 + x2) + cos-1 (1 - y2)/(1 + y2)]/2, |x| < 1, y > 0 and xy < 1.

解决方案

令 x = tan θ

tan-1 x = θ

现在,

sin-1 2x/(1 + x2) = sin-1 (2 tan θ)/(1 + tan2 θ)

利用 sin 2A = 2 tan A/(1 + tan2 A),我们得到

sin-1 (2 tan θ)/(1 + tan2 θ)

= sin-1 (sin 2θ)

= 2θ

= 2 tan-1 x

设 y = tan ϕ

tan-1 y = ϕ

现在,

cos-1 (1 - y2)/(1 + y2) = cos-1 (1 - tan2 ϕ)/(1 + tan2 ϕ)

利用 cos 2A = (1 - tan2 A)/(1 + tan2 A),我们得到

cos-1 (1 - tan2 ϕ)/(1 + tan2 ϕ)

= cos-1 (cos 2ϕ)

= 2ϕ

= 2 tan-1 y

所以,

tan [sin-1 2x/(1 + x2) + cos-1 (1 - y2)/(1 + y2)]/2

= tan [2 tan-1 x + 2 tan-1 y]/2

= tan [2(tan-1 x + tan-1 y)/2]

= tan (tan-1 x + tan-1 y)

利用 tan-1 x + tan-1 y = tan-1 (x + y)/(1 - xy),我们得到

tan (tan-1 x + tan-1 y)

= tan [tan-1 (x + y)/(1 - xy)]

= (x + y)/(1 - xy)

求练习题 10 至 12 中各表达式的值

10. sin-1 (sin 2π/3)

解决方案

我们知道 sin-1 (sin x) = x,如果 x ∈ [-π/2, π/2],这是 sin-1 x 的主值区间。

2π/3 ∉ [-π/2, π/2]

所以,

sin-1 (sin 2π/3) = sin-1 [sin (π - 2π/3)]

= sin-1 [sin π/3]

现在,π/3 ∈ [-π/2, π/2]。

因此,

sin-1 (sin 2π/3) = sin-1 [sin π/3] = π/3

11. tan-1 (tan 3π/4)

解决方案

我们知道 tan-1 (tan x) = x,如果 x ∈ (-π/2, π/2),这是 tan-1 x 的主值区间。

3π/4 ∉ (-π/2, π/2)

所以,

tan-1 (tan 3π/4) = tan-1 [-tan (-3π/4)]

= tan-1 [-tan (π - π/4)]

= tan-1 [-tan π/4]

= tan-1 [tan (-π/4)]

现在,-π/4 ∈ (-π/2, π/2)。

因此,

tan-1 (tan 3π/4) = tan-1 [tan (-π/4)]

= -π/4

12. tan (sin-13/5 + cot-13/2)

解决方案

设 sin-1 3/5 = x

sin x = 3/5

sin2 x + cos2 x = 1

cos2 x = 1 - sin2 x

cos x = √(1 - sin2 x)

cos x = √(1 - 9/25)

cos x = √(16/25)

cos x = 4/5

tan x = sin x/cos x

tan x = (3/5)/(4/5)

tan x = 3/4

x = tan-1 3/4

所以,

sin-1 3/5 = tan-1 3/4

tan-1 2/3 = cot-1 3/2

因此,

tan (sin-1 3/5 + cot-1 3/2)

= tan [tan-1 3/4 + tan-1 2/3]

利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到

tan [tan-1 3/4 + tan-1 2/3]

= tan [tan-1 (3/4 + 2/3)/(1 - 3/4 × 2/3)]

= tan [tan-1 [(9 + 8)/12]/[1 - 1/2]]

= tan [tan-1 (17/12)/(1/2)]

= tan [tan-1 17/6]

= 17/6

13. cos-1 (cos 7π/6) 等于

  1. 7π/6
  2. 5π/6
  3. π/3
  4. π/6

解决方案

我们知道 cos-1 (cos x) = x,如果 x ∈ [0, x],这是 cos-1 x 的主值区间。

7π/6 ∉ [0, π]

所以,

cos-1 (cos 7π/6) = cos-1 (cos -7π/6)

= cos-1 [cos (2π - 7π/6)]

= cos-1 [cos 5π/6]

现在,5π/6 ∈ [0, π]。

因此,

cos-1 (cos 7π/6) = cos-1 [cos 5π/6]

= cos-1 [cos 5π/6]

= 5π/6

因此,正确答案是 (B)。

14. sin (π/3 - sin-1 (-1/2)) 等于

  1. 1/2
  2. 1/3
  3. 1/4
  4. 1

解决方案

设 sin-1 (-1/2) = x

sin x = -1/2

sin x = -sin π/6

sin x = sin (-π/6)

sin-1 (-1/2) = -π/6

我们知道 sin-1 的主值区间是 [-π/2, π/2]。

sin (π/3 - sin-1 (-1/2))

= sin (π/3 + π/6)

= sin (3π/6)

= sin π/2

= 1

因此,正确答案是 (D)。

15. tan-1 √3 - cot-1 (-√3) 等于

  1. π
  2. -π/2
  3. 0
  4. 2√3

解决方案

我们知道 tan-1 的主值区间是 (-π/2, π/2),cot-1 的主值区间是 (0, π)。

tan-1 √3 - cot-1 (-√3)

= tan‑1 (tan π/3) - cot-1 (cot (-π/6))

= tan-1 (tan π/3) - cot-1 (cot (π - π/6))

= π/3 - cot-1 (cot 5π/6)

= π/3 - 5π/6

= -3π/6

= -π/2

因此,正确答案是 (B)。

杂项练习

求下列各式的值

1. cos-1 (cos 13π/6)

解决方案

我们知道 cos-1 (cos x) = x,如果 x ∈ [0, x],这是 cos-1 x 的主值区间。

13π/6 ∉ [0, π]

所以,

cos-1 (cos 13π/6)

= cos-1 [cos (2π + π/6)]

= cos-1 [cos π/6]

现在,π/6 ∈ [0, π]。

因此,

cos-1 (cos 13π/6) = cos-1 [cos π/6]

= π/6

2. tan-1 (tan 7π/6)

解决方案

我们知道 tan-1 (tan x) = x,如果 x ∈ (-π/2, π/2),这是 tan-1 x 的主值区间。

7π/6 ∉ (-π/2, π/2)

所以,

tan-1 (tan 7π/6) = tan-1 [tan (2π - 5π/6)]

= tan-1 [-tan 5π/6]

= tan-1 [tan (-5π/6)]

= tan-1 [tan (π - 5π/6)]

= tan-1 [tan π/6]

现在,π/6 ∈ (-π/2, π/2)。

因此,

tan-1 (tan 7π/6) = tan-1 [tan π/6]

= π/6

证明:

3. 2 sin-1 3/5 = tan-1 24/7

解决方案

设 sin-1 3/5 = x

sin x = 3/5

cos2 x + sin2 x = 1

cos2 x = 1 - sin2 x

cos x = √(1 - (3/5)2)

cos x = √(1 - 9/25)

cos x = √(16/25)

cos x = 4/5

tan x = sin x/cos x

tan x = (3/5)/(4/5)

tan x = 3/4

x = tan-1 3/4

所以,sin-1 3/5 = tan-1 3/4

现在,左边 = 2 sin-1 3/5

= 2 tan-1 3/4

利用 2 tan-1 A = tan-1 2A/(1 - A2),我们得到

2 tan-1 3/4 = tan-1 2(3/4)/(1 - (3/4)2)

= tan-1 (3/2)/(1 - 9/16)

= tan-1 (3/2)/(7/16)

= tan-1 24/7 = 右边

因此,证明完毕。

4. sin-1 8/17 + sin-1 3/5 = tan-1 77/36

解决方案

设 sin-1 8/17 = x

sin x = 8/17

cos2 + sin2 x = 1

cos2 x = 1 - sin2 x

cos x = √(1 - sin2 x)

cos x = √(1 - (8/17)2)

cos x = √(1 - 64/289)

cos x = √(22/289)

cos x = 15/17

tan x = sin x/cos x

tan x = (8/17)/(15/17)

tan x = 8/15

x = tan-1 8/15

所以,sin-1 8/17 = tan-1 8/15

设 sin-1 3/5 = y

sin y = 3/5

cos2 y + sin2 y = 1

cos2 y = 1 - sin2 y

cos y = √(1 - (3/5)2)

cos y = √(1 - 9/25)

cos y = √(16/25)

cos y = 4/5

tan y = sin y/cos y

tan y = (3/5)/(4/5)

tan y = 3/4

y = tan-1 3/4

所以,sin-1 3/5 = tan-1 3/4

现在,左边 = sin-1 8/17 + sin-1 3/5

= tan-1 8/15 + tan-1 3/4

利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到

tan-1 8/15 + tan-1 3/4

= tan-1 (8/15 + 3/4)/(1 - 8/15 × 3/4)

= tan-1 [(32 + 45)/60]/[1 - 2/5]

= tan-1 [77/60]/[3/5]

= tan-1 77/36 = 右边

因此,证明完毕。

5. cos-14/5 + cos-1 12/13 = cos-133/65

解决方案

设 cos-1 x = 4/5

cos x = 4/5

sin2 x + cos2 x = 1

sin2 x = 1 - cos2 x

sin x = √(1 - (4/5)2)

sin x = √(1 - 16/25)

sin x = √(9/25)

sin x = 3/5

tan x = sin x/cos x

tan x = (3/5)/(4/5)

tan x = 3/4

x = tan-1 3/4

所以,cos-1 4/5 = tan-1 3/4

设 cos-1 12/13 = y

cos y = 12/13

sin2 y + cos2 y = 1

sin2 y = 1 - cos2 y

sin y = √(1 - (12/13)2)

sin y = √(1 - 144/169)

sin y = √(25/169)

sin y = 5/13

tan y = sin y/cos y

tan y = (5/13)/(12/13)

tan y = 5/12

y = tan-1 5/12

所以,cos-1 12/13 = tan-1 5/12

设 cos-1 33/65 = z

cos z = 33/65

sin2 z + cos2 z = 1

sin2 z = 1 - cos2 z

sin z = √(1 - (33/65)2)

sin z = √(1 - 1089/4225)

sin z = √(3136/4225)

sin z = 56/65

tan z = sin z/cos z

tan z = (56/65)/(33/65)

tan z = 56/33

z = tan-1 56/33

所以,cos-1 33/65 = tan-1 56/33

现在,左边 = cos-1 4/5 + cos-1 12/13

= tan-1 3/4 + tan-1 5/12

利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到

tan-1 3/4 + tan-1 5/12

= tan-1 (3/4 + 5/12)/(1 - 3/4 × 5/12)

= tan-1 [(9 + 5)/12]/[1 - 5/16]

= tan-1 [14/12]/[11/16]

= tan-1 (56/33)

= cos-1 33/65 = 右边

因此,证明完毕。

6. cos-1 12/13 + sin-13/5 = sin-1 56/65

解决方案

设 cos-1 12/13 = x

cos x = 12/13

sin2 x + cos2 x = 1

sin2 x = 1 - cos2 x

sin x = √(1 - (12/13)2)

sin x = √(1 - 144/169)

sin x = √(25/169)

sin x = 5/13

tan x = sin x/cos x

tan x = (5/13)/(12/13)

tan x = 5/12

x = tan-1 5/12

所以,cos-1 12/13 = tan-1 5/12

设 sin-1 3/5 = y

sin y = 3/5

cos2 y + sin2 y = 1

cos2 y = 1 - sin2 y

cos y = √(1 - (3/5)2)

cos y = √(1 - 9/25)

cos y = √(16/25)

cos y = 4/5

tan y = sin y/cos y

tan y = (3/5)/(4/5)

tan y = 3/4

y = tan-1 3/4

所以,sin-1 3/5 = tan-1 3/4

设 sin-1 56/65 = z

sin z = 56/65

cos2 z + sin2 z = 1

cos2 z = 1 - sin2 z

cos z = √(1 - sin2 z)

cos z = √(1 - (56/65)2)

cos z = √(1 - 3136/4225)

cos z = √(1089/4225)

cos z = 33/65

tan z = sin z/cos z

tan z = (56/65)/(33/65)

tan z = 56/33

z = tan-1 56/33

所以,sin-1 56/65 = tan-1 56/33

现在,左边 = cos-1 12/13 + sin-1 3/5

= tan-1 5/12 + tan-1 3/4

利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到

tan-1 5/12 + tan-1 3/4

= tan-1 (5/12 + 3/4)/(1 - 3/4 × 5/12)

= tan-1 [(4 + 9)/12]/[1 - 5/16]

= tan-1 [14/12]/[11/16]

= tan-1 (56/33)

= sin-1 56/65 = 右边

因此,证明完毕。

7. tan-163/16 = sin-1 5/13 + cos-1 3/5

解决方案

设 sin-1 5/13 = x

sin x = 5/13

x = sin-1 5/13

cos2 x + sin2 x = 1

cos2 x = 1 - sin2 x

cos x = √(1 - sin2 x)

cos x = √(1 - (5/13)2)

cos x = √(1 - 25/169)

cos x = √(144/169)

cos x = 12/13

tan x = sin x/cos x

tan x = (5/13)/(12/13)

tan x = 5/12

x = tan-1 5/12

所以,sin-1 5/13 = tan-1 5/12

设 cos-1 3/5 = y

cos y = 3/5

sin2 y + cos2 y = 1

sin2 y = 1 - cos2 y

sin y = √(1 - cos2 y)

sin y = √(1 - (3/5)2)

sin y = √(1 - 9/25)

sin y = 4/5

tan y = sin y/cos y

tan y = (4/5)/(3/5)

tan y = 4/3

y = tan-1 4/3

所以,cos-1 3/5 = tan-1 4/3

现在,右边 = sin‑1 5/13 + cos-1 3/5

= tan-1 5/12 + tan-1 4/3

利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到

tan-1 5/12 + tan-1 4/3

= tan-1 [(5/12 + 4/3)/(1 - 5/12 × 4/3)]

= tan-1 [(5 + 16)12]/[1 - 5/9]

= tan‑1 [21/12]/[4/9]

= tan-1 63/16 = 左边

因此,证明完毕。

证明:

8. tan-1 √x = 1/2 cos-1 (1 - x)/(1 + x), x ∈ [0, 1]

解决方案

设 x = tan2 θ

√x = tan θ

θ = tan-1 √x

因此,

右边 = 1/2 cos-1 (1 - x)/(1 + x)

= 1/2 cos-1 (1 - tan2 θ)/(1 + tan2 θ)

利用 (1 - tan2 A)/(1 + tan2 A) = cos 2A,我们得到

= 1/2 cos-1 (cos 2θ)

= 1/2 × 2θ

= θ

= tan-1 √x = 左边

因此,证明完毕。

9. cot-1 [√(1 + sin x) + √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)] = x/2, x ∈ (0, π/4)

解决方案

对 [√(1 + sin x) + √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)] 进行有理化

[√(1 + sin x) + √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)] × [√(1 + sin x) - √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)]

= [√(1 + sin x) + √(1 - sin x)]2/[√(1 + sin x)2 - √(1 - sin x)2]

= [(1 + sin x) + (1 - sin x) + 2√(1 + sin x)(1 - sin x)]/[1 + sin x - 1 + sin x]

= [2 + 2√(1 - sin2 x)]/[2 sin x]

= 2[1 + √(1 - sin2 x)]/[2 sin x]

= [1 + √cos2 x]/sin x

= [1 + cos x]/sin x

= [2 cos2 x/2]/[2 sin x/2 cos x/2]

= (cos x/2)/(sin x/2)

= cot x/2

因此,

左边 = cot-1 [√(1 + sin x) + √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)]

= cot-1 [cot x/2]

= x/2 = 右边

因此,证明完毕。

10. tan‑1 (√(1 + x) - √(1 - x))/(√(1 + x) + √(1 - x)) = π/4 - 1/2 cos-1 x, -1/√2 ≤ x ≤ 1 [提示:令 x = cos 2θ]

解决方案

设 x = cos 2θ

2θ = cos-1 x

θ = 1/2 cos-1 x

现在,

左边 = tan‑1 (√(1 + x) - √(1 - x))/(√(1 + x) + √(1 - x))

= tan‑1 (√(1 + cos 2θ) - √(1 - cos 2θ))/(√(1 + cos 2θ) + √(1 - cos 2θ))

= tan‑1 (√(2 cos2 θ) - √(2 sin2 θ))/(√(2 cos2 θ) + √(2 sin2 θ))

= tan‑1 (√2 cos θ - √2 sin θ)/(√2 cos θ + √2 sin θ)

= tan‑1 √2 (cos θ - sin θ)/√2(cos θ + sin θ)

= tan-1 (cos θ - sin θ)/(cos θ + sin θ)

= tan-1 (1 - tan θ)/(1 + tan θ)

利用 tan-1 (A - B)/(1 + AB) = tan-1 A - tan-1 B,我们得到

tan-1 (1 - tan θ)/(1 + 1 × tan θ)

= tan-1 1 - tan-1 (tan θ)

= π/4 - θ

= π/4 - 1/2 cos-1 x = 右边

因此,证明完毕。

解下列方程

11. 2 tan-1 (cos x) = tan-1(2 cosec x)

解决方案

2 tan-1 (cos x) = tan-1 (2 cosec x)

利用 2 tan-1 A = tan-1 2A/(1 - A2),我们得到

tan-1 2 cos x/(1 - cos2 x) = tan-1 (2 cosec x)

2 cos x/(1 - cos2 x) = 2 cosec x

2 cos x/sin2 x = 2 cosec x

cos x/sin2 x = cosec x

cos x/sin2 x = 1/sin x

cos x/sin x = 1

cot x = 1

x = cot-1 1

x = π/4

12. tan-1 (1 - x)/(1 + x) = 1/2 tan-1 x, (x > 0)

解决方案

tan-1 (1 - x)/(1 + x) = 1/2 tan-1 x

利用 tan-1 (A - B)/(1 + AB) = tan-1 A - tan-1 B,我们得到

tan-1 1 - tan-1 x = 1/2 tan-1 x

π/4 = 1/2 tan-1 x + tan-1 x

π/4 = (tan-1 x + 2 tan-1 x)/2

π/4 = 3/2 tan-1 x

tan-1 x = π/6

x = tan π/6

x = 1/√3

13. sin (tan-1 x), |x| < 1 等于

  1. x/√(1 - x2)
  2. 1/√(1 - x2)
  3. 1/√(1 + x2)
  4. x/√(1 + x2)

解决方案

设 tan-1 x = y

tan y = x

利用 tan-1 A/B = sin-1 A/√(A2 + B2),我们得到

tan-1 x/1 = sin-1 x/√(1 + x2)

两边取 sin,

sin (tan-1 x) = sin [sin­-1 x/√(1 + x2)]

sin (tan-1 x) = x/√(1 + x2)

因此,(D) 是正确答案。

14. sin-1 (1 - x) - 2 sin-1 x = π/2,那么 x 等于

  1. 0, 1/2
  2. 1, 1/2
  3. 0
  4. 1/2

解决方案

已知:sin-1 (1 - x) - 2 sin-1 x = π/2

设 x = sin y

y = sin-1 x

sin-1 (1 - x) - 2 sin-1 x = π/2

sin-1 (1 - sin y) - 2y = π/2

sin-1 (1 - sin y) = π/2 + 2y

两边取 sin,

sin [sin-1 (1 - sin y)] = sin (π/2 + 2y)

1 - sin y = sin (π/2 + 2y)

1 - sin y = cos 2y

利用 cos 2A = 1 - 2 sin2 A,我们得到

1 - sin y = 1 - 2 sin2 y

2 sin2 y - sin y = 0

2x2 - x = 0

x (2x - 1) = 0

x = 0

2x - 1 = 0 ⇒ x = 1/2

但 x ≠ 1/2,因为它不满足给定方程。

因此,x = 0 是该方程的解。

因此,(C) 是正确答案。