12 年级数学第 2 章:反三角函数 的 NCERT 解决方案2024年9月24日 | 阅读18分钟 练习 2.1求下列各式的主值 1. sin-1 (-1/2) 解决方案 设 sin-1 (-1/2) = y sin y = -1/2 sin y = -sin π/6 sin y = sin (-π/6) 我们知道 sin-1 的主值区间是 [-π/2, π/2],且 sin (-π/6) = -1/2。 因此,sin-1 (-1/2) 的主值是 -π/6。 2. cos-1 (√3/2) 解决方案 设 cos-1 (√3/2) = y cos y = √3/2 co y = cos π/6 我们知道 cos-1 的主值区间是 [0, π],且 cos (π/6) = √3/2。 因此,cos-1 (√3/2) 的主值是 π/6。 3. cosec-1 (2)。 解决方案 设 cosec-1 (2) = y cosec y = 2 cosec y = cosec π/6 我们知道 cosec-1 的主值区间是 [-π/2, π/2] - {0},且 cosec (π/6) = 2。 因此,cosec-1 (2) 的主值是 π/6。 4. tan-1 (-√3) 解决方案 设 tan-1 (-√3) = y tan y = -√3 tan y = -tan π/3 tan y = tan (-π/3) 我们知道 tan-1 的主值区间是 (-π/2, π/2),且 tan (-π/3) = -√3。 因此,tan-1 (-√3) 的主值是 -π/3。 5. cos-1 (-1/2) 解决方案 设 cos-1 (-1/2) = y cos y = -1/2 cos y = -cos π/3 cos y = cos (π - π/3) cos y = cos (2π/3) 我们知道 cos-1 的主值区间是 [0, π],且 cos 2π/3 = -1/2。 因此,cos-1 (-1/2) 的主值是 2π/3。 6. tan-1 (-1) 解决方案 设 tan-1 (-1) = y tan y = -1 tan y = -tan π/4 tan y = tan (-π/4) 我们知道 tan-1 的主值区间是 (-π/2, π/2),且 tan (-π/4) = -1。 因此,tan-1 (-1) 的主值是 -π/4。 7. sec-1 (2/√3) 解决方案 设 sec-1 (2/√3) = y sec y = 2/√3 sec y = sec π/6 我们知道 sec-1 的主值区间是 [0, π] - {π/2},且 sec π/6 = 2/√3。 因此,sec-1 (2/√3) 的主值是 π/6。 8. cot-1 (√3) 解决方案 设 cot-1 (√3) = y cot y = √3 cot y = cot π/6 我们知道 cot-1 的主值区间是 (0, π),且 cot π/6 = √3。 因此,cot-1 (√3) 的主值是 π/6。 9. cos-1 (-1/√2) 解决方案 设 cos-1 (-1/√2) = y cos y = -1/√2 cos y = -cos π/4 cos y = cos (π - π/4) cos y = cos (3π/4) 我们知道 cos-1 的主值区间是 [0, π],且 cos 3π/4 = -1/√2。 因此,cos-1 (-1/2) 的主值是 3π/4。 10. cosec-1 (-√2) 解决方案 设 cosec-1 (-√2) = y cosec y = -√2 cosec y = -cosec π/4 cosec y = cosec (-π/4) 我们知道 cosec-1 的主值区间是 [-π/2, π/2] - {0},且 cosec (-π/4) = -√2。 因此,cosec-1 (-√2) 的主值是 π/4。 求下列各式的值 11. tan-1 (1) + cos-1 (-1/2) + sin-1 (-1/2) 解决方案 设 tan-1 (1) = x tan x = 1 tan x = tan π/4 所以,tan-1 (1) = π/4 设 cos-1 (-1/2) = y cos y = -1/2 cos y = -cos π/3 cos y = cos (π - π/3) cos y = cos 2π/3 所以,cos-1 (-1/2) = 2π/3 设 sin-1 (-1/2) = z sin z = -1/2 sin z = -sin π/6 sin z = sin (-π/6) sin-1 (-1/2) = -π/6 因此, tan-1 (1) + cos-1 (-1/2) + sin-1 (-1/2) = π/4 + 2π/3 - π/6 = (3π + 8π - 2π)/12 = 9π/12 = 3π/4 12. cos-1 (1/2) + 2 sin-1 (1/2) 解决方案 设 cos-1 (1/2) = x cos x = 1/2 cos x = cos π/3 所以,cos-1 (1/2) = π/3 设 sin-1 (1/2) = y sin y = 1/2 sin y = sin π/6 所以,sin-1 (1/2) = π/6 因此, cos-1 (1/2) + 2 sin-1 (1/2) = π/3 + 2(π/6) = π/3 + π/3 = 2π/3 13. 如果 sin-1 x = y,那么
解决方案 sin-1 x = y sin y = x 我们知道 sin-1 的主值区间是 [-π/2, π/2]。 因此,-π/2 ≤ y ≤ π/2。 14. 求 tan-1 √3 - sec-1 (-2) 的值等于
解决方案 设 tan-1 √3 = x tan x = √3 tan x = tan π/3 我们知道 tan-1 的主值区间是 (-π/2, π/2),且 tan π/3 = √3。 因此,tan-1 √3 = π/3 设 sec-1 (-2) = y sec y = -2 sec y = -sec π/6 sec y = sec (π - π/6) sec y = sec 2π/3 我们知道 sec-1 的主值区间是 [0, π] - {π/2},且 sec (2π/3) = -2。 因此,sec-1 (-2) = 2π/3 因此,tan-1 √3 - sec-1 (-2) = π/3 - 2π/3 = -π/3 ⇒ (B) 是正确答案。 练习 2.2证明下列各式 1. 3 sin-1 x = sin-1 (3x - 4x3), x ∈ [-1/2, 1/2] 解决方案 设 x = sin θ sin-1 x = θ 取右边 = sin-1 (3x - 4x3) = sin-1 (3 sin θ - 4 sin3 θ) = sin-1 [sin 3θ] = 3θ = 3 sin-1 x = 左侧 因此,证明完毕。 2. 3 cos-1 x = cos-1 (4x3 - 3x), x ∈ [1/2, 1] 解决方案 设 x = cos θ cos-1 x = θ 取右边 = cos-1 (4x3 - 3x) = cos-1 (4 cos3 θ - 3 cos θ) = cos-1 (cos 3θ) = 3θ = 3 cos-1 x = 左侧 因此,证明完毕。 将下列函数写成最简形式 3. tan-1 (√(1 + x2) - 1)/x, x ≠ 0 解决方案 令 x = tan θ tan-1 x = θ tan-1 (√(1 + x2) - 1)/x = tan-1 (√(1 + tan2 θ) - 1)/tan θ = tan-1 ((sec θ - 1)/tan θ) = tan-1 ((1 - cos θ)/sin θ) 利用 1 - cos 2A = 2 sin2 A 和 sin 2A = 2 sin A cos A,我们得到 tan-1 ((1 - cos θ)/sin θ) = tan-1 [(2 sin2 θ/2)/(2 sin θ/2 cos θ/2)] = tan-1 [(sin θ/2)/(cos θ/2)] = tan-1 (tan θ/2) = θ/2 = (tan-1 x)/2 4. tan-1 √(1 - cos x)/√(1 + cos x), 0 < x < π 解决方案 tan-1 √(1 - cos x)/√(1 + cos x) 利用 1 - cos 2A = 2 sin2 A 和 1 + cos 2A = 2 cos2 A,我们得到 tan-1 √(1 - cos x)/√(1 + cos x) = tan-1 [√(2 sin2 x/2)/√(2 cos2 x/2)] = tan-1 [(sin x/2)/(cos x/2)] = tan-1 (tan x/2) = x/2 5. tan-1 [(cos x - sin x)/(cos x + sin x)], -π/4 < x < 3π/4 解决方案 tan-1 [(cos x - sin x)/(cos x + sin x)] 将 [(cos x - sin x)/(cos x + sin x)] 的分子和分母都除以 cos x tan-1 [(cos x - sin x)/(cos x + sin x)] = tan-1 [(1 - sin x/cos x)/(1 + sin x/cos x)] = tan-1 [(1 - tan x)/(1 + tan x)] = tan-1 [(1 - tan x)/(1 - (1)(-tan x))] 利用 tan-1 [(A - B)/(1 + AB)] = tan-1 A - tan-1 B = tan-1 (1) - tan-1 (tan x) = tan-1 (tan π/4) - x = π/4 - x 6. tan-1 x/√(a2 - x2), |x| < a 解决方案 设 x = a sin θ sin θ = x/a sin-1 (x/a) = θ tan-1 x/√(a2 - x2) = tan-1 (a sin θ)/√(a2 - a2 sin2 θ) = tan-1 (a sin θ)/√a2(1 - sin2 θ) = tan-1 (a sin θ)/a√cos2 θ = tan-1 (sin θ)/(cos θ) = tan-1 (tan θ) = θ = sin-1 (x/a) 7. tan-1 (3a2x - x3)/(a3 - 3ax2), a > 0; -a/√3 < x < a/√3 解决方案 设 x = a tan θ tan θ = x/a tan-1 (x/a) = θ tan-1 (3a2x - x3)/(a3 - 3ax2) = tan-1 (3a2(a tan θ) - a3 tan3 θ)/(a3 - 3a(a2 tan2 θ)) = tan-1 (3a3 tan θ - a3 tan3 θ)/(a3 - 3a3 tan2 θ) = tan-1 a3(3 tan θ - tan3 θ)/a3(1 - 3 tan2 θ) = tan-1 (3 tan θ - tan3 θ)/(1 - 3 tan2 θ) = tan-1 (tan 3θ) = 3θ = 3 tan-1 (x/a) 求下列各式的值 8. tan-1 [2 cos (2 sin-1 1/2)] 解决方案 设 sin-1 1/2 = x sin x = 1/2 sin x = sin π/6 因此,sin-1 1/2 = π/6 tan-1 [2 cos (2 sin-1 1/2)] = tan-1 [2 cos (2 × π/6)] = tan-1 [2 cos π/3] = tan-1 [2 × 1/2] = tan-1 1 = π/4 9. tan [sin-1 2x/(1 + x2) + cos-1 (1 - y2)/(1 + y2)]/2, |x| < 1, y > 0 and xy < 1. 解决方案 令 x = tan θ tan-1 x = θ 现在, sin-1 2x/(1 + x2) = sin-1 (2 tan θ)/(1 + tan2 θ) 利用 sin 2A = 2 tan A/(1 + tan2 A),我们得到 sin-1 (2 tan θ)/(1 + tan2 θ) = sin-1 (sin 2θ) = 2θ = 2 tan-1 x 设 y = tan ϕ tan-1 y = ϕ 现在, cos-1 (1 - y2)/(1 + y2) = cos-1 (1 - tan2 ϕ)/(1 + tan2 ϕ) 利用 cos 2A = (1 - tan2 A)/(1 + tan2 A),我们得到 cos-1 (1 - tan2 ϕ)/(1 + tan2 ϕ) = cos-1 (cos 2ϕ) = 2ϕ = 2 tan-1 y 所以, tan [sin-1 2x/(1 + x2) + cos-1 (1 - y2)/(1 + y2)]/2 = tan [2 tan-1 x + 2 tan-1 y]/2 = tan [2(tan-1 x + tan-1 y)/2] = tan (tan-1 x + tan-1 y) 利用 tan-1 x + tan-1 y = tan-1 (x + y)/(1 - xy),我们得到 tan (tan-1 x + tan-1 y) = tan [tan-1 (x + y)/(1 - xy)] = (x + y)/(1 - xy) 求练习题 10 至 12 中各表达式的值 10. sin-1 (sin 2π/3) 解决方案 我们知道 sin-1 (sin x) = x,如果 x ∈ [-π/2, π/2],这是 sin-1 x 的主值区间。 2π/3 ∉ [-π/2, π/2] 所以, sin-1 (sin 2π/3) = sin-1 [sin (π - 2π/3)] = sin-1 [sin π/3] 现在,π/3 ∈ [-π/2, π/2]。 因此, sin-1 (sin 2π/3) = sin-1 [sin π/3] = π/3 11. tan-1 (tan 3π/4) 解决方案 我们知道 tan-1 (tan x) = x,如果 x ∈ (-π/2, π/2),这是 tan-1 x 的主值区间。 3π/4 ∉ (-π/2, π/2) 所以, tan-1 (tan 3π/4) = tan-1 [-tan (-3π/4)] = tan-1 [-tan (π - π/4)] = tan-1 [-tan π/4] = tan-1 [tan (-π/4)] 现在,-π/4 ∈ (-π/2, π/2)。 因此, tan-1 (tan 3π/4) = tan-1 [tan (-π/4)] = -π/4 12. tan (sin-13/5 + cot-13/2) 解决方案 设 sin-1 3/5 = x sin x = 3/5 sin2 x + cos2 x = 1 cos2 x = 1 - sin2 x cos x = √(1 - sin2 x) cos x = √(1 - 9/25) cos x = √(16/25) cos x = 4/5 tan x = sin x/cos x tan x = (3/5)/(4/5) tan x = 3/4 x = tan-1 3/4 所以, sin-1 3/5 = tan-1 3/4 tan-1 2/3 = cot-1 3/2 因此, tan (sin-1 3/5 + cot-1 3/2) = tan [tan-1 3/4 + tan-1 2/3] 利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到 tan [tan-1 3/4 + tan-1 2/3] = tan [tan-1 (3/4 + 2/3)/(1 - 3/4 × 2/3)] = tan [tan-1 [(9 + 8)/12]/[1 - 1/2]] = tan [tan-1 (17/12)/(1/2)] = tan [tan-1 17/6] = 17/6 13. cos-1 (cos 7π/6) 等于
解决方案 我们知道 cos-1 (cos x) = x,如果 x ∈ [0, x],这是 cos-1 x 的主值区间。 7π/6 ∉ [0, π] 所以, cos-1 (cos 7π/6) = cos-1 (cos -7π/6) = cos-1 [cos (2π - 7π/6)] = cos-1 [cos 5π/6] 现在,5π/6 ∈ [0, π]。 因此, cos-1 (cos 7π/6) = cos-1 [cos 5π/6] = cos-1 [cos 5π/6] = 5π/6 因此,正确答案是 (B)。 14. sin (π/3 - sin-1 (-1/2)) 等于
解决方案 设 sin-1 (-1/2) = x sin x = -1/2 sin x = -sin π/6 sin x = sin (-π/6) sin-1 (-1/2) = -π/6 我们知道 sin-1 的主值区间是 [-π/2, π/2]。 sin (π/3 - sin-1 (-1/2)) = sin (π/3 + π/6) = sin (3π/6) = sin π/2 = 1 因此,正确答案是 (D)。 15. tan-1 √3 - cot-1 (-√3) 等于
解决方案 我们知道 tan-1 的主值区间是 (-π/2, π/2),cot-1 的主值区间是 (0, π)。 tan-1 √3 - cot-1 (-√3) = tan‑1 (tan π/3) - cot-1 (cot (-π/6)) = tan-1 (tan π/3) - cot-1 (cot (π - π/6)) = π/3 - cot-1 (cot 5π/6) = π/3 - 5π/6 = -3π/6 = -π/2 因此,正确答案是 (B)。 杂项练习求下列各式的值 1. cos-1 (cos 13π/6) 解决方案 我们知道 cos-1 (cos x) = x,如果 x ∈ [0, x],这是 cos-1 x 的主值区间。 13π/6 ∉ [0, π] 所以, cos-1 (cos 13π/6) = cos-1 [cos (2π + π/6)] = cos-1 [cos π/6] 现在,π/6 ∈ [0, π]。 因此, cos-1 (cos 13π/6) = cos-1 [cos π/6] = π/6 2. tan-1 (tan 7π/6) 解决方案 我们知道 tan-1 (tan x) = x,如果 x ∈ (-π/2, π/2),这是 tan-1 x 的主值区间。 7π/6 ∉ (-π/2, π/2) 所以, tan-1 (tan 7π/6) = tan-1 [tan (2π - 5π/6)] = tan-1 [-tan 5π/6] = tan-1 [tan (-5π/6)] = tan-1 [tan (π - 5π/6)] = tan-1 [tan π/6] 现在,π/6 ∈ (-π/2, π/2)。 因此, tan-1 (tan 7π/6) = tan-1 [tan π/6] = π/6 证明: 3. 2 sin-1 3/5 = tan-1 24/7 解决方案 设 sin-1 3/5 = x sin x = 3/5 cos2 x + sin2 x = 1 cos2 x = 1 - sin2 x cos x = √(1 - (3/5)2) cos x = √(1 - 9/25) cos x = √(16/25) cos x = 4/5 tan x = sin x/cos x tan x = (3/5)/(4/5) tan x = 3/4 x = tan-1 3/4 所以,sin-1 3/5 = tan-1 3/4 现在,左边 = 2 sin-1 3/5 = 2 tan-1 3/4 利用 2 tan-1 A = tan-1 2A/(1 - A2),我们得到 2 tan-1 3/4 = tan-1 2(3/4)/(1 - (3/4)2) = tan-1 (3/2)/(1 - 9/16) = tan-1 (3/2)/(7/16) = tan-1 24/7 = 右边 因此,证明完毕。 4. sin-1 8/17 + sin-1 3/5 = tan-1 77/36 解决方案 设 sin-1 8/17 = x sin x = 8/17 cos2 + sin2 x = 1 cos2 x = 1 - sin2 x cos x = √(1 - sin2 x) cos x = √(1 - (8/17)2) cos x = √(1 - 64/289) cos x = √(22/289) cos x = 15/17 tan x = sin x/cos x tan x = (8/17)/(15/17) tan x = 8/15 x = tan-1 8/15 所以,sin-1 8/17 = tan-1 8/15 设 sin-1 3/5 = y sin y = 3/5 cos2 y + sin2 y = 1 cos2 y = 1 - sin2 y cos y = √(1 - (3/5)2) cos y = √(1 - 9/25) cos y = √(16/25) cos y = 4/5 tan y = sin y/cos y tan y = (3/5)/(4/5) tan y = 3/4 y = tan-1 3/4 所以,sin-1 3/5 = tan-1 3/4 现在,左边 = sin-1 8/17 + sin-1 3/5 = tan-1 8/15 + tan-1 3/4 利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到 tan-1 8/15 + tan-1 3/4 = tan-1 (8/15 + 3/4)/(1 - 8/15 × 3/4) = tan-1 [(32 + 45)/60]/[1 - 2/5] = tan-1 [77/60]/[3/5] = tan-1 77/36 = 右边 因此,证明完毕。 5. cos-14/5 + cos-1 12/13 = cos-133/65 解决方案 设 cos-1 x = 4/5 cos x = 4/5 sin2 x + cos2 x = 1 sin2 x = 1 - cos2 x sin x = √(1 - (4/5)2) sin x = √(1 - 16/25) sin x = √(9/25) sin x = 3/5 tan x = sin x/cos x tan x = (3/5)/(4/5) tan x = 3/4 x = tan-1 3/4 所以,cos-1 4/5 = tan-1 3/4 设 cos-1 12/13 = y cos y = 12/13 sin2 y + cos2 y = 1 sin2 y = 1 - cos2 y sin y = √(1 - (12/13)2) sin y = √(1 - 144/169) sin y = √(25/169) sin y = 5/13 tan y = sin y/cos y tan y = (5/13)/(12/13) tan y = 5/12 y = tan-1 5/12 所以,cos-1 12/13 = tan-1 5/12 设 cos-1 33/65 = z cos z = 33/65 sin2 z + cos2 z = 1 sin2 z = 1 - cos2 z sin z = √(1 - (33/65)2) sin z = √(1 - 1089/4225) sin z = √(3136/4225) sin z = 56/65 tan z = sin z/cos z tan z = (56/65)/(33/65) tan z = 56/33 z = tan-1 56/33 所以,cos-1 33/65 = tan-1 56/33 现在,左边 = cos-1 4/5 + cos-1 12/13 = tan-1 3/4 + tan-1 5/12 利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到 tan-1 3/4 + tan-1 5/12 = tan-1 (3/4 + 5/12)/(1 - 3/4 × 5/12) = tan-1 [(9 + 5)/12]/[1 - 5/16] = tan-1 [14/12]/[11/16] = tan-1 (56/33) = cos-1 33/65 = 右边 因此,证明完毕。 6. cos-1 12/13 + sin-13/5 = sin-1 56/65 解决方案 设 cos-1 12/13 = x cos x = 12/13 sin2 x + cos2 x = 1 sin2 x = 1 - cos2 x sin x = √(1 - (12/13)2) sin x = √(1 - 144/169) sin x = √(25/169) sin x = 5/13 tan x = sin x/cos x tan x = (5/13)/(12/13) tan x = 5/12 x = tan-1 5/12 所以,cos-1 12/13 = tan-1 5/12 设 sin-1 3/5 = y sin y = 3/5 cos2 y + sin2 y = 1 cos2 y = 1 - sin2 y cos y = √(1 - (3/5)2) cos y = √(1 - 9/25) cos y = √(16/25) cos y = 4/5 tan y = sin y/cos y tan y = (3/5)/(4/5) tan y = 3/4 y = tan-1 3/4 所以,sin-1 3/5 = tan-1 3/4 设 sin-1 56/65 = z sin z = 56/65 cos2 z + sin2 z = 1 cos2 z = 1 - sin2 z cos z = √(1 - sin2 z) cos z = √(1 - (56/65)2) cos z = √(1 - 3136/4225) cos z = √(1089/4225) cos z = 33/65 tan z = sin z/cos z tan z = (56/65)/(33/65) tan z = 56/33 z = tan-1 56/33 所以,sin-1 56/65 = tan-1 56/33 现在,左边 = cos-1 12/13 + sin-1 3/5 = tan-1 5/12 + tan-1 3/4 利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到 tan-1 5/12 + tan-1 3/4 = tan-1 (5/12 + 3/4)/(1 - 3/4 × 5/12) = tan-1 [(4 + 9)/12]/[1 - 5/16] = tan-1 [14/12]/[11/16] = tan-1 (56/33) = sin-1 56/65 = 右边 因此,证明完毕。 7. tan-163/16 = sin-1 5/13 + cos-1 3/5 解决方案 设 sin-1 5/13 = x sin x = 5/13 x = sin-1 5/13 cos2 x + sin2 x = 1 cos2 x = 1 - sin2 x cos x = √(1 - sin2 x) cos x = √(1 - (5/13)2) cos x = √(1 - 25/169) cos x = √(144/169) cos x = 12/13 tan x = sin x/cos x tan x = (5/13)/(12/13) tan x = 5/12 x = tan-1 5/12 所以,sin-1 5/13 = tan-1 5/12 设 cos-1 3/5 = y cos y = 3/5 sin2 y + cos2 y = 1 sin2 y = 1 - cos2 y sin y = √(1 - cos2 y) sin y = √(1 - (3/5)2) sin y = √(1 - 9/25) sin y = 4/5 tan y = sin y/cos y tan y = (4/5)/(3/5) tan y = 4/3 y = tan-1 4/3 所以,cos-1 3/5 = tan-1 4/3 现在,右边 = sin‑1 5/13 + cos-1 3/5 = tan-1 5/12 + tan-1 4/3 利用 tan-1 A + tan-1 B = tan-1 (A + B)/(1 - AB),我们得到 tan-1 5/12 + tan-1 4/3 = tan-1 [(5/12 + 4/3)/(1 - 5/12 × 4/3)] = tan-1 [(5 + 16)12]/[1 - 5/9] = tan‑1 [21/12]/[4/9] = tan-1 63/16 = 左边 因此,证明完毕。 证明: 8. tan-1 √x = 1/2 cos-1 (1 - x)/(1 + x), x ∈ [0, 1] 解决方案 设 x = tan2 θ √x = tan θ θ = tan-1 √x 因此, 右边 = 1/2 cos-1 (1 - x)/(1 + x) = 1/2 cos-1 (1 - tan2 θ)/(1 + tan2 θ) 利用 (1 - tan2 A)/(1 + tan2 A) = cos 2A,我们得到 = 1/2 cos-1 (cos 2θ) = 1/2 × 2θ = θ = tan-1 √x = 左边 因此,证明完毕。 9. cot-1 [√(1 + sin x) + √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)] = x/2, x ∈ (0, π/4) 解决方案 对 [√(1 + sin x) + √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)] 进行有理化 [√(1 + sin x) + √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)] × [√(1 + sin x) - √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)] = [√(1 + sin x) + √(1 - sin x)]2/[√(1 + sin x)2 - √(1 - sin x)2] = [(1 + sin x) + (1 - sin x) + 2√(1 + sin x)(1 - sin x)]/[1 + sin x - 1 + sin x] = [2 + 2√(1 - sin2 x)]/[2 sin x] = 2[1 + √(1 - sin2 x)]/[2 sin x] = [1 + √cos2 x]/sin x = [1 + cos x]/sin x = [2 cos2 x/2]/[2 sin x/2 cos x/2] = (cos x/2)/(sin x/2) = cot x/2 因此, 左边 = cot-1 [√(1 + sin x) + √(1 - sin x)]/[√(1 + sin x) - √(1 - sin x)] = cot-1 [cot x/2] = x/2 = 右边 因此,证明完毕。 10. tan‑1 (√(1 + x) - √(1 - x))/(√(1 + x) + √(1 - x)) = π/4 - 1/2 cos-1 x, -1/√2 ≤ x ≤ 1 [提示:令 x = cos 2θ] 解决方案 设 x = cos 2θ 2θ = cos-1 x θ = 1/2 cos-1 x 现在, 左边 = tan‑1 (√(1 + x) - √(1 - x))/(√(1 + x) + √(1 - x)) = tan‑1 (√(1 + cos 2θ) - √(1 - cos 2θ))/(√(1 + cos 2θ) + √(1 - cos 2θ)) = tan‑1 (√(2 cos2 θ) - √(2 sin2 θ))/(√(2 cos2 θ) + √(2 sin2 θ)) = tan‑1 (√2 cos θ - √2 sin θ)/(√2 cos θ + √2 sin θ) = tan‑1 √2 (cos θ - sin θ)/√2(cos θ + sin θ) = tan-1 (cos θ - sin θ)/(cos θ + sin θ) = tan-1 (1 - tan θ)/(1 + tan θ) 利用 tan-1 (A - B)/(1 + AB) = tan-1 A - tan-1 B,我们得到 tan-1 (1 - tan θ)/(1 + 1 × tan θ) = tan-1 1 - tan-1 (tan θ) = π/4 - θ = π/4 - 1/2 cos-1 x = 右边 因此,证明完毕。 解下列方程 11. 2 tan-1 (cos x) = tan-1(2 cosec x) 解决方案 2 tan-1 (cos x) = tan-1 (2 cosec x) 利用 2 tan-1 A = tan-1 2A/(1 - A2),我们得到 tan-1 2 cos x/(1 - cos2 x) = tan-1 (2 cosec x) 2 cos x/(1 - cos2 x) = 2 cosec x 2 cos x/sin2 x = 2 cosec x cos x/sin2 x = cosec x cos x/sin2 x = 1/sin x cos x/sin x = 1 cot x = 1 x = cot-1 1 x = π/4 12. tan-1 (1 - x)/(1 + x) = 1/2 tan-1 x, (x > 0) 解决方案 tan-1 (1 - x)/(1 + x) = 1/2 tan-1 x 利用 tan-1 (A - B)/(1 + AB) = tan-1 A - tan-1 B,我们得到 tan-1 1 - tan-1 x = 1/2 tan-1 x π/4 = 1/2 tan-1 x + tan-1 x π/4 = (tan-1 x + 2 tan-1 x)/2 π/4 = 3/2 tan-1 x tan-1 x = π/6 x = tan π/6 x = 1/√3 13. sin (tan-1 x), |x| < 1 等于
解决方案 设 tan-1 x = y tan y = x 利用 tan-1 A/B = sin-1 A/√(A2 + B2),我们得到 tan-1 x/1 = sin-1 x/√(1 + x2) 两边取 sin, sin (tan-1 x) = sin [sin-1 x/√(1 + x2)] sin (tan-1 x) = x/√(1 + x2) 因此,(D) 是正确答案。 14. sin-1 (1 - x) - 2 sin-1 x = π/2,那么 x 等于
解决方案 已知:sin-1 (1 - x) - 2 sin-1 x = π/2 设 x = sin y y = sin-1 x sin-1 (1 - x) - 2 sin-1 x = π/2 sin-1 (1 - sin y) - 2y = π/2 sin-1 (1 - sin y) = π/2 + 2y 两边取 sin, sin [sin-1 (1 - sin y)] = sin (π/2 + 2y) 1 - sin y = sin (π/2 + 2y) 1 - sin y = cos 2y 利用 cos 2A = 1 - 2 sin2 A,我们得到 1 - sin y = 1 - 2 sin2 y 2 sin2 y - sin y = 0 2x2 - x = 0 x (2x - 1) = 0 x = 0 或 2x - 1 = 0 ⇒ x = 1/2 但 x ≠ 1/2,因为它不满足给定方程。 因此,x = 0 是该方程的解。 因此,(C) 是正确答案。 |
我们请求您订阅我们的新闻通讯以获取最新更新。