C++ 埃及分数贪心算法2025 年 3 月 25 日 | 阅读 6 分钟 引言埃及分数是一种通过单位分数之和来表示有理数的方法,其中分子为 1。在他们的象形文字中,古埃及人采用这种技术来表示分数。古埃及分数总是唯一的;因此,没有两个分数是相同的。 在本文中,我们将讨论埃及分数问题,然后解释如何用 C++ 构建一个贪婪算法,该算法可以确定给定有理数是否可以表示为埃及分数。 问题陈述给定一个有理数 n/d,其中 n 是分子,d 是分母,将该分数表示为不同的单位分数之和。 例如,我们以 4/7 为分数。 4/7 = 1/2 +1/14 的埃及分数表示。 贪婪算法贪婪算法是一种解决问题的方法,它优先考虑做出最佳的即时选择,希望以此获得整体最优化的结果。这种方法涉及在每个阶段选择最有利的选项,而不考虑潜在的未来后果。目标是在每一步最大化结果,假设这种策略将导致最有利的整体解决方案。 用于确定埃及分数的贪婪算法基于一个简单的原理:在每次迭代中,选择小于剩余真分数(proper fraction)的最大可行单位分数。 使用贪婪算法有以下步骤。 贪婪算法步骤
程序让我们举一个例子来说明 C++ 中埃及分数的贪婪算法。 输出 Enter the numerator: 4 Enter the denominator: 7 Egyptian Fraction Representation: 1/2 + 1/14 说明 用户输入将构成埃及分数的分子和分母。
时间和空间复杂度
贪婪算法的优点贪婪算法有几个优点。贪婪算法的一些主要优点如下:
贪婪算法的缺点贪婪算法有几个缺点。贪婪算法的一些主要缺点如下:
结论总之,我们研究了埃及分数问题,然后使用了用 C++ 编写的贪婪算法来寻找任何给定有理数的埃及分数表示。这些是古埃及人在记谱法中使用过的不同的单位分数,它们提供了一种独特的表示有理数的方式。贪婪算法通过在每个时期获取可能的最大单位分布,直到没有剩余,从而快速获得表示。时间和空间复杂度分析突出了该过程的实用性和资源需求。本质上,这次探索让我们对埃及分数历史上的重要性有所阐释,同时也演示了贪婪算法如何在现实世界的计算机编程情况中得到应用。 |
在竞争性编程、软件开发和系统编程的世界中,有效地管理独特的元素集合是一个常见的需求。C++ 标准模板库 (STL) 中的 set 容器完美地满足了这一需求。作为 STL 的基础数据结构之一,...
阅读 17 分钟
Grundy 数,也称为 Nim 数,对于解决 C++ 中的组合游戏论问题至关重要。它们代表游戏中位置的最小排除 (mex) 值,确定获胜或失败状态。通过计算 Grundy 数,玩家可以预测最佳走法并分析游戏...
7 分钟阅读
在 C++ 中填充每个节点中的右指针 填充二叉树每个节点中的右指针是计算机科学中的一个经典问题,涉及增强树的结构以支持特定类型的遍历和操作。这个问题尤其与...
阅读 17 分钟
史密斯数(Smith Number)的定义和性质。一个复合数,其各位数字之和与其所有质因数的各位数字之和相等(在质因数分解的基础上),则称为史密斯数。关于史密斯数的一些关键事实:复合数:史密斯数不能是质数。数字相等:数字...
阅读 12 分钟
在本文中,我们将讨论 C++ 中的 Vector::operator= 和 Vector::operator[]。但在讨论这些向量之前,我们必须了解 C++ STL。什么是“C++ STL”?“C++ STL”的首字母缩写代表“C++ 标准模板库”。它是一组模板类,用于为 C++ 提供……
5 分钟阅读
在 C++23 中,ranges 库将包含一个名为 zip 的算法,该算法接受两个或多个输入范围(例如,列表或向量)。在接收两个(或一般情况下的任意数量)范围后,zip_view 会生成一个元组的单个范围,其中每个元组包含一个元素……
阅读 4 分钟
一个数字可以写成两个或多个连续正整数之和的不同方式,是数学中一个有趣的“数字礼貌度”概念。以下文章探讨了数学中礼貌度的定义,并展示了如何...
阅读 4 分钟
当一个函数不返回任何值时,它被称为 void 函数。当函数的主要目的是执行某些操作或任务而不产生需要返回到调用代码的结果时,可以使用它。这些函数执行集合...
阅读 3 分钟
在本文中,我们将讨论,包括其语法、示例、优点以及许多其他内容。引言:在 C++ 全局中,理解流的细节及其格式化机制是流式 I/O 的核心。一个有用的功能是 C++ 标准库中的 std::basic_ios::copyfmt...
7 分钟阅读
以著名的阿拉伯数学家 Thābit ibn Qurra(公元 826-901 年)命名的 Thabit 数是一类有趣的数论数字。这些数由一个简单的数学公式定义,由于其有趣的性质、与素数测试的联系以及...
阅读 8 分钟
我们请求您订阅我们的新闻通讯以获取最新更新。
我们提供所有技术(如 Java 教程、Android、Java 框架)的教程和面试问题
G-13, 2nd Floor, Sec-3, Noida, UP, 201301, India