C++ 俄罗斯农民乘法算法2025年3月21日 | 阅读 9 分钟 引言俄罗斯农夫乘法算法,也称为埃及乘法算法,是一种古老的乘法方法,它依赖于减半和加倍,使其适用于手工计算。它通过重复减半一个数字,并根据特定条件累加结果,将乘法问题分解为一系列更简单的步骤。 它是如何工作的?俄罗斯农夫乘法算法的核心思想是迭代地将一个数字减半(除以 2),并将另一个数字加倍(乘以 2)。如果减半后的数字是奇数,则将加倍的数字加到结果中。如果减半后的数字是偶数,则丢弃加倍的数字。这个过程一直持续到第一个数字减到 1。 方法 1:简单方法实施输出 The product of 18 and 25 is: 450 说明
复杂度分析时间复杂度 减半和加倍
奇数检查和加法
因此,算法在每次迭代中执行恒定的工作量,并且迭代次数与 log a 成正比。因此,总时间复杂度为 O(log a)。 空间复杂度 俄罗斯农夫乘法算法只使用少数几个额外的变量,例如 result 和 a、b 的临时副本。这些变量占用恒定的空间。
因此,无论输入数字的大小如何,空间复杂度均为 O(1)(常数空间)。 方法 2:使用 Karatsuba 算法Karatsuba 算法通过将较大的数字分解成更小的部分,使用更少的乘法来降低乘法的时间复杂度。它利用了这样一个观点:两个数字的乘积可以通过将数字分解成更小的部分,将这些部分相乘,然后合并结果来计算。该算法实现了比标准乘法更好的时间复杂度,即两个 n 位数字的乘法为 O(n²)。 实施输出 Product of 1234 and 5678 is: 7006652 说明
通过分割数字,我们可以将乘法问题表示为 其中 m 是低位部分的位数(例如,在此例中 m = 2)。 3. 三次主要乘法 要使用此公式计算两个数字的乘积,我们需要三次乘法:
这给出了中间项,这对于有效合并三个结果至关重要。 4. 递归调用 这三次乘法(z2、z0 和 z1)中的每一次都涉及比原始问题更小的数字。如果这些数字仍然很大,算法将递归地调用自身,进一步分割数字,直到它们足够小可以进行直接乘法。 这种递归是算法效率的来源——通过将大乘法分解为小乘法,整体时间复杂度得以降低。 5. 合并结果 一旦计算出三个部分(z2、z0 和 z1),算法就会将它们合并以获得最终乘积。合并方式如下:
6. 辅助函数 由于数字以字符串形式处理(以管理大值),因此算法包含以下辅助函数:
这些辅助函数对于在不溢出数据类型限制的情况下处理大数字至关重要。 7. 基本情况 递归停止在数字足够小以进行直接乘法时(即,个位数)。当这种情况发生时,算法执行基本乘法并返回结果。 8. 最后一步 在递归调用和三次乘法(z2、z1 和 z0)之后,将结果合并以得出最终答案。这种分割、递归乘法和合并的过程一直持续到所有递归调用都得到解决。 复杂度分析时间复杂度 递归:Karatsuba 算法递归地将数字分成两半,直到它们足够小可以进行直接乘法。
对数深度:如果输入数字有 n 位,则递归深度为 log₂(n),因为每次输入大小都会减半。 乘法成本:在每个递归级别,都会对大小减半的数字执行三次乘法,并且这种过程会沿着递归树一直向下进行。合并结果(通过加法和减法)的成本在每个级别都是线性的。 总时间复杂度:总时间复杂度由 O(n^log₂3) 给出,简化为大约 O(n^1.585)。这比传统乘法处理大数字时的 O(n²) 复杂度要好得多。 空间复杂度 递归堆栈:由于该算法使用递归,因此递归堆栈所需的空间取决于递归的深度。
临时存储:在每次递归调用中,都需要空间来存储中间结果(例如 z2、z1 和 z0),以及加法和减法运算的结果。 总空间复杂度:由于递归函数调用的内存需求以及加法和减法运算期间的中间结果存储,空间复杂度为 O(n)。 下一个主题C++ 中使用重复步骤和模运算转换数组 |
多米诺骨牌和三联骨牌铺砖问题是一个迷人且经典的组合数学和计算机科学问题。它涉及确定使用多米诺骨牌和三联骨牌完全覆盖 2×n 板而不发生重叠或间隙的方法数量。这个问题不仅提供了见解……
阅读 15 分钟
在本文中,我们将讨论其语法、属性、程序以及许多其他方面的区别。什么是? 在 C++ 中,数组是基本数据结构,用于在连续内存中存储相同类型的多个元素。数组的大小是其类型的一部分……
阅读 6 分钟
简介 在不断发展的编程语言领域,在精巧与创新相遇之际,基本概念的作用不可低估。编程领域的核心在于数据类型和修饰符的动态组合,它们是代码构建和解释的基石。在...
阅读 10 分钟
在本文中,我们将找到一个数字的切换位,除了第一个和最后一个位之外。给定一个数字,目标是切换除第一个和最后一个位之外的所有位。示例:输入:11 输出:13 二进制表示:- 1 0 1 1 切换第一个和最后一个位后:1...
阅读 2 分钟
Thue-Morse 序列,也称为 Prouhet-Thue-Morse 序列,是一种优雅且无限的二进制序列,几十年来一直吸引着数学家、计算机科学家和理论家。它构造简单,结合其丰富的数学性质,使其成为人们极大兴趣和……的主题。
阅读 16 分钟
在本文中,我们将讨论 C++ 中的 McCreight 算法,包括其历史、实现等。McCreight 算法简介:McCreight 构建后缀树的方法是一个重要的算法。它是一种用于字符串处理和模式匹配的数据结构。它由 Edward M. McCreight 创建...
阅读 13 分钟
简介 C++ 中输入流库的一个重要组成部分是 std::basic_istream::sentry 类,它旨在在执行 I/O 操作之前控制信息流对象的当前条件和能力。Sentry 是一个应用程序类,它确保用户输入操作被执行... ...
阅读 6 分钟
简介:Count-Min Sketch 是一种概率数据结构,用于对大型数据流中的近似计数查询。它使用有限的内存空间高效地估计数据流中元素的频率。本质上,Count-Min Sketch 由一个二维计数器数组组成。哈希……
阅读 4 分钟
在本文中,我们将讨论特洛伊数字的示例、用例等。什么是特洛伊数字?特洛伊数字在数学和编程中引起了问题,这些问题旨在测试逻辑推理并从而加强算法技能,以特定方式设计....
阅读 4 分钟
std::span 类模板概述 std::span 类模板是 C++20 中引入的一个全新的构造,它是一个轻量级的、非拥有对象的范围指针。它提供了一种访问数组或其一部分而无需……
11 分钟阅读
我们请求您订阅我们的新闻通讯以获取最新更新。
我们提供所有技术(如 Java 教程、Android、Java 框架)的教程和面试问题
G-13, 2nd Floor, Sec-3, Noida, UP, 201301, India