引力定义17 Mar 2025 | 6 分钟阅读 ![]() 引力是宇宙中任意两个质量之间最基本的吸引力。它负责将行星维持在围绕太阳的轨道上,并使我们的双脚能够立足于地面。引力还负责形成恒星、星系和其他天体。 ![]() 引力是由于质量或能量的存在导致时空弯曲而产生的。一个物体质量越大,它周围的时空结构弯曲就越严重,从而导致其他物体被吸引到它那里。这通常被形象地比作一个球放在一张橡皮纸上,球代表质量,橡皮纸代表时空结构。球会导致橡皮纸在其周围发生弯曲,形成一个凹陷,其他物体会滚向那里。 两个质量之间的引力与它们的质量乘积成正比,与它们之间距离的平方成反比。这种关系由牛顿万有引力定律描述,该定律指出两个质量之间的力由以下公式给出: => F = G(m₁m₂/r²) 其中 F 是引力,G 是万有引力常数,m₁ 和 m₂ 是两个物体的质量,r 是它们之间的距离。 万有引力常数 G 是一个通用常数,它决定了两个物体之间引力的强度。其值约为 6.6743 × 10?¹¹ N·(m/kg)²。 这意味着两个质量均为 1 千克、相距 1 米的物体之间的引力约为 6.6743 × 10?¹¹ 牛顿。引力在宇宙的各个尺度上都至关重要,从最小的亚原子粒子到宇宙中最大的结构。它是四种基本自然力之一,与电磁力、弱核力和强核力并列。 它是如何产生的?引力在宇宙中一直存在,但我们对它的理解一直在发展。例如,古希腊人观察到物体会落向地球,并推测某种力量必须将它们拉向下。然而,在 17 世纪,艾萨克·牛顿提出了他著名的万有引力定律。 牛顿万有引力定律是理解维系天体轨道力的性质的一个开创性见解。他意识到,使物体落向地球的力也负责行星围绕太阳的轨道。他推测,宇宙中的每一个质量都以与其质量乘积成正比、与其距离平方成反比的力吸引着其他每一个质量。该定律使科学家能够精确预测天体的运动,并为我们现代的宇宙理解奠定了基础。 然而,牛顿万有引力定律并非没有局限性。它无法解释某些观测现象,例如水星轨道的进动,只有更复杂的引力理论才能解释。在 20 世纪初,阿尔伯特·爱因斯坦发展了他的广义相对论,该理论提供了对引力的完整理解。 爱因斯坦的广义相对论认为,引力不是一种力,而是质量或能量的存在导致的对时空的弯曲。根据该理论,大质量物体会扭曲其周围的时空结构,导致其他物体被吸引到它们那里。该理论解释了牛顿万有引力定律无法解释的许多现象,例如引力对光的弯曲以及引力红移。 牛顿万有引力定律牛顿万有引力定律是一条基本物理定律,它描述了两个有质量物体之间的吸引力。该定律于 1687 年首次由艾萨克·牛顿爵士在其里程碑式的著作中提出。根据牛顿万有引力定律,宇宙中的每一个粒子都以与其质量乘积成正比、与其距离平方成反比的力吸引着其他每一个粒子。换句话说,两个物体之间的吸引力随着物体质量的增加而增加,随着物体之间距离的增加而减小。 牛顿万有引力定律的数学表达式为: => F = G * (m1 * m2) / r2 其中 F 是两个物体之间的吸引力,G 是万有引力常数,m1 和 m2 是两个物体的质量,r 是它们质心之间的距离。万有引力常数 G 是一个通用常数,它决定了两个物体之间引力的强度。 牛顿万有引力定律最重要的应用之一是计算行星绕太阳的轨道。太阳和每颗行星之间的引力决定了它们的轨道形状和大小。利用万有引力定律,天文学家可以计算宇宙中任意两个物体之间的引力,并预测它们的运动。 牛顿万有引力定律的另一个重要应用是确定天体的质量。通过测量两个物体之间的引力及其距离,天文学家可以计算出物体的质量。然而,牛顿万有引力定律并非完美。它只是近似了引力的实际行为,并且没有考虑到相对论或量子力学的影响。爱因斯坦的广义相对论对引力进行了更精确的描述,它考虑了质量物体对时空的弯曲。 引力的用途引力,即两个有质量物体之间的吸引力,是自然界的一种基本力,在各个领域都有许多重要的用途和应用。以下是引力的一些用途:
引力场的特点引力是两个有质量物体之间的吸引力。以下是引力的一些不同特点:
结论根据牛顿万有引力定律,宇宙中的每一个粒子都被吸引到其他每一个粒子,其力与它们之间距离的平方成反比,与质量的乘积成正比。 下一主题中位数定义 |
我们请求您订阅我们的新闻通讯以获取最新更新。